QFO-AP-FI-MO02	اسم النموذج: Course Syllabus	جامعة فيلادنفيا
رقم الاصدار : 1 (Revision)	الجهة المصدرة: كلية تكنولوجيا المعلومات	Company Company Company
التاريخ :2017/11/05		Philadelphia University
عدد صفحات النموذج:	الجهة المدققة: عمادة التطوير والجودة	

Course Title: C++ Programming	
Language (for students of Science	Course code: 0750115 , Section :
Faculty)	
Course Level:1	Course prerequisite (s) and/or corequisite (s):none
Lecture Time:	Credit hours:3h

Academic Staff Specifics

Name	Rank	Office Number and Location	Office Hours	E-mail Address

Course module description:

The module focuses on problem solving strategies and the use of algorithmic language to describe such problem solving. It introduces the principles of procedural programming, data types, control structures, functions, data representation on the machine level, problems that might be solved, and the use of c++ programming language.

Course module objectives:

This module aims to introduce the principles of Top Down problem solving strategy (divide and conquer), algorithm design, and imperative programming mainly at an abstract level. Topics include data definition structures, control structures, and primitive data structures. C++ programming language (in visual environment) is adopted as a vehicle language for implementations.

Course/ module components

- Books (title, author (s), publisher, year of publication)
 - P. Deitel & H. Deitel, C++ How to program, Pearson Education Limited, 2013.
- **Support material (s) :** Introduction to C++ slides

Teaching methods: lectures, tutorials, and practical works

Duration: 16 weeks in first semester, 48 hours in total

Lectures: 32 hours (2 hours per week),

Tutorials: 16 hours, 1 per week, *Laboratories*: 16 hours, 1 per week,

Learning outcomes

A- Knowledge and understanding

- A2. Know & understand a wide range of principles and tools available to the software developer, such as design methodologies, choice of algorithm, language, software libraries and user interface technique:
- A4. Know & understand a wide range of software and hardware used in development of computer systems
- A5. Know & understand the professional and ethical responsibilities of the practising computer professional including understanding the need for quality, security, and computer ethics.
- **B-** Intellectual skills (thinking and analysis).
 - B1. Analyze a wide range of problems and provide solutions through suitable algorithms, structures, diagrams, and other appropriate methods
 - B4. Practice self learning by using the e-courses

C- Practical skills

- C3. Work effectively with and for others.
- C4. Strike the balance between self-reliance and seeking help when necessary in new situations
- C5. Display personal responsibility by working to multiple deadlines in complex activities

D- Transferable Skills

- D2. Prepare and deliver coherent and structured verbal and written technical reports.
- D4. Use the scientific literature effectively and make discriminating use of Web resources
- D5. Design, write, and debug computer programs in appropriate languages

Learning outcomes achievement

• Development: A2, A4, and A5 are developed through the lectures and laboratory sessions.

B1, D5, C3, and C4 are developed trough Tutorials and Lab sessions.

B4, D2, D4, D5, and C5 are developed through Homework

Assessment : A2, A4, A5, B1, D5, and C4 and are assessed through
 Quizzes, written exams, and Practical Works Exams.
 B4, D2, D4, D5, and C5 are assessed through Homework
 Exam.

Assessment instruments

- Quizzes.
- Home works: practical project
- First, Second, and Final Exams.

Allocation of Marks			
Assessment Instruments	Mark		
First examination	20		
Second examination	20		
Final examination: 50 marks	40		
projects, Quizzes, and Home works	20		
Total	100		

Course/module academic calendar

week	Basic and support material to be covered	Homework/reports and their due dates	
	Problem Solving, Problem Solving		
(1)	Methodology: Analysis, Design (Algorithm),		
	Flowchart		
(2)	Algorithm Testing, Maintenance	Tutorial	
	C++ language environment	Tutorial	
	(program structure, compile, execute, debug)		
	Input and output statements		
(3+4)	Assignment statement		
	Assignment operations		
	Precedence rules		
	Data definition statements		
	Program control statements:		
	Simple selection statement (ifelse)		
(5+6)	Multiple selection statement switch case	Tutorial, Assignment #1	
	Program repetition statements:		
	for repetition statement		
(7)	Program repetition statements:		
First	while repetition statement	Tutorial, Assignment #2	
examination	do while repetition statement	_	
(8)	One and two dimensional Arrays	Tutorial	
(9)	File (use of main operations of a sequential file:		
	open, reset, rewrite, read, write, eof)	Tutorial, Assignment #3	
	Abstract data type (Struct Definition statement)	_	
(10)	Pointers	Tutorial	
(11+12)	Function (Peremeters definition and nessing)	Tutorial	
Second	Function (Parameters definition and passing)	Tutoriai	
examination			
(12)	String: (use of main operations: read, write, string	Tutorial Assistant #4	
(13)	length, concatenate, compare)	Tutorial, Assignment #4	
(14+15)	Comprehensive assignment covers all		
Specimen	mentioned topics		
examination			
(16)			
Final	Review and final Exam		
Examination			

Expected workload: On average students need to spend 3 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

- 1. D.S. Malik, Thomson, C++ Programming: From Problem Analysis to Program Design, Sixth Edition, Course Technology, 2012.
- 2. Friedman Frank and Koffman Elliot B., "*Problem Solving, Abstraction and Design using C++"*, Pearson Education, 2011.