
1

Course Syllabus

Course code: 721420
Course Title:

Software Construction

Course prerequisite (s) and/or corequisite (s):

721284, 760261
Course Level: 3

Credit hours: 3
Lecture Time: 11:15-12:30 Mon. &

Wed.

 Academic Staff Specifics

E-mail Address
Office

Hours

Office Number and

Location
Rank Name

shanna@philadelphia.edu.jo

10:00-11:00

Sun., Tues. &

Thur.

 IT - 313
Assistant

Professor
Dr Samer Hanna

Course/ module description
This course presents general principles and techniques for disciplined low-level software coding:

mapping design outcomes into code, mapping architecture to code, selection of appropriated

programming language to specific application, code development with errors avoidance techniques,

code development with errors tolerance techniques, code development with API, and code

development environments programming and GUI builders. An introduction to code testing will close

the course

Course/ module objectives

This course aims to:

- The needed strategies for mapping the architecture and design of applications into source code

- Develop code with errors avoidance techniques

- To discuss the latest technologies for building software applications and knowing which of

these technologies to use depending on the requirement specifications of our software

problem.

- Preparing the student to pursue their career in software construction by introducing to them

the needed software skills to achieve this target.

Course/ module components

 Books (author (s), title , publisher, year of publication)

1. S. McConnell Code Complete- Software Construction, Microsoft Press, 2
nd

 edition, 2004. Available

as a Google book at

[http://books.google.jo/books?id=3JfE7TGUwvgC&printsec=frontcover&hl=ar&source=gbs_ge_sum

mary_r&cad=0#v=onepage&q&f=false]

 جامعة فيلادلفيا

Philadelphia University

 Course Syllabus : النموذجاسم
QFO-AP-FI-MO02

 الجهة المصدرة: كلية تكنولوجيا المعلومات
 رقم الاصدار :

Revision))1

 : عمادة التطوير والجودةالجهة المدققة

 05/11/2017التاريخ :

 عدد صفحات النموذج:

mailto:shanna@philadelphia.edu.jo
mailto:shanna@philadelphia.edu.jo

2

2. B. Buegge & A. Dutoit, "Object-Oriented Software Engineering, using UML, Pattern and Java",

Second Edition, 2004.

3. R. N. Taylor, N. Medvidovic and E. Dashofy, “Software Architecture Foundations, Theory, And

practice” John Wiley & Sons, 2010.

 Support material (s)

 Study guide (s) (if applicable)

-Part1/ mapping design to code techniques

- Part II/coding techniques and tools

 Homework and laboratory guide (s) if (applicable)

- attached Homework and Practical work sheet

Teaching methods
Duration: 16 weeks, 60 hours in total. Lectures: 30 hours, 2 per week. Tutorial: 12, 1 per week.

Laboratories: 3 in lab and 15 hours in total, 1-hour per week (personal). The last week is reserved to

practical works examination.

Learning outcomes
A student completing this module unit should be able to:

Knowledge and understanding of

1. The methods and processes that should be followed to map a certain

requirement, architecture or design of a software application to the

corresponding implementation. (A2, A3)

2. The current available software technologies and justifying which of these

technologies to choose depending on the problem to be solved. (A2)

3. The needed methods to correctly implement and document solutions to

significant computational problems. (A2, A3)

4. The application of computing in a business context. (A8)

5. The needed methods to debug a program using appropriate debugging

strategies and distinguish between error types. (A2)

6. Evaluation of the tools and techniques in software construction. (A2)

7. The knowledge to develop software applications in development environment

that makes use of commonly supported tools. (A2)

Cognitive skills (thinking and analysis)

8. Analyze a software problem or architecture and think of the most proper way to

map them to the suitable programming language and technology. (B2)

9. Design, write and debug computer programs in appropriate languages. (B3)

10. Solve real software construction problems from the software industry. (B3)

11. Identify a range of solutions and critically evaluate and justify proposed

design solutions. (B4)

12. Analyze, transform, improve, and validate software applications. (B2)

13. Evaluate software applications in terms of general quality attributes and

possible trade-offs presented within the given problem. (B6)

Practical skills

14. Use API libraries for software construction. (C1)

15. Write code in both Java and C# programming languages (C3)

16. Develop desktop and Web applications (C3).

17. Prepare and deliver coherent and structured verbal and written technical

report.(C7)

18. Use the scientific literature effectively. (C8)

3

Transferable skills

19. Process data. (D1)

20. Solve problems (D3)

21. Use creativity (D2)

22. Communicate effectively with non-specialist as well as computer scientist,

(D4)

23. Give oral presentations and write report and technical documents. (D5)

Assessment of Learning Outcomes

Learning outcomes (1-7) are assessed by examinations. Learning outcomes (8-23) are

assessed by tutorials, laboratory work, projects and examinations.

Assessment instruments

 Class works: 15 (project and quizzes)

 Practice (construction tool): 05

 Final examination: 40

 Short Examinations: 2 x 20

Allocation of Marks

Mark Assessment Instruments

20 First examination

20 Second examination

40 Final examination: 40 marks

20 Reports, research projects, Quizzes, Home

works, Projects

100 Total

Documentation and academic honesty

 Documentation style (with illustrative examples)
- Practical works reports must be presented according to the style specified in the homework and practical work

guide

 Protection by copyright

 Avoiding plagiarism

- Any stated plagiarism leads to an academic penalty

Course/module academic calendar

week

Basic and support material to be covered Practical Work

(PW) and

Examinations

(1) a. Introduction to Software Construction such as: its importance, involved tasks and

activities, types etc.

b. Background about the architecture and detailed design of software applications

(2) Implementation Strategies (Available techniques to assist in the development of the

implementation from the design including: generation technologies, frameworks and

middleware, and reuse.

(3) Mapping design outcomes into Code/ derivation of code from design models

- Application of Object Model (Class Diagram): UML

1
st
 PW

4

(4) Mapping the Object Model to a Database Schema

(5) Construction tools technology/ Techniques and tools supporting code dev.

API use, Code reuse and libraries

(6) Steps of Building a Routine

Constructing a routine by using the Pseudocode Programming Process (PPP)

First examination

(7) Choosing the appropriate programming language depending on the requirement

specifications (Discussing the characteristics of the well-known programming languages

and when each of them can be used)

(8) Defensive Programming 2
nd

 PW

(9) Error Handling Techniques

(10) Code-Tuning Strategies

(11)

Error avoidance Vulnerable techniques: Program Flow Control breaking (goto, continue,

exit, break, …), Recursion, Global data, parameters by value and by references
Second examination

(12) Service Oriented Architecture (SOA) and Web Services (A new paradigm of building

software applications)
3

rd
PW

(13) Distributed Middlewares

(14) Software construction Tools/

1- Development environments, GUI builders

(15) - Unit testing tools

(16) Practical Exam Final Examination

Expected workload

 On average students need to spend 2 hours of study and preparation for each 50-minute

lecture/tutorial.

Attendance policy

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15%

limit without a medical or emergency excuse acceptable to and approved by the Dean of

the relevant college/faculty hall not be allowed to take the final examination and shall

receive a mark of zero for the course. If the excuse is approved by the Dean, the student

shall be considered to have withdrawn from the course.

Module references

Books
1. M. Blaha and J. Rumbaugh, “Object-Oriented Modeling and Design with UML”, Second editions

PEARSON Prentice Hall 2005.

2. D. Brugali and M. Torchiano, "Software Development Case Studies in Java", Addison Wesley,

2005.
3. P. Tahchiev, F. Leme, V. Massol and G. Gregory, "JUnit in Action", Second Edition, MANNING,

2011.

