Philadelphia University
 Faculty of Science
 Department of Mathematics

Academemic Year: 2023-2024
Semester: First Semester
Exam: Mid-Term Exam
Instructor: Dr.Hani Qwareeq
Dr.Abdullah Alsoboh

Course Name: Calculus 3
Course Number: 250202
Duration: 9:45-10:45 am
Date: 29/11/2023
Section 1, 2, 3, 4

Student Name:

Student ID:

This exam consists of 4 PAGES, 2 QUESTIONS and ($30+3$ Bonus) total marks. Please show all work needed to arrive at your solutions. GOOD LUCK

Question $\# \mathbf{1}$: [22 marks] This question consists of 11 multiple choice questions (2 Mark for each), where each question has 5 options, only one of which is correct. Put the answer symbol in the table below.

Question \#	1	2	3	4	5	6	7	8	9	10	11
Answer Symbol											

1. The domain of $\vec{r}(t)=\sqrt{5+t} \vec{i}+\sqrt{5-t} \vec{j}+t^{2} \vec{k}$ is
a) $t \leq 5$
b) $|t| \leq 5$
c) $|t| \geq 5$
d) $t \geq 5$
e) None of the above
2. One of the following equations represent the equation of plane through the point $P(2,-10,3)$ and perpendicular to the line

$$
x=5+4 t, y=2+2 t, z=1+6 t
$$

a) $4 x+2 y+6 z=6$
b) $4 x+2 y+6 z=-5$
e) None of the above
c) $4 x+2 y+6 z=12$
d) $4 x+2 y+6 z=-6$
3. The radius of the sphere described by the equation $(x+3)^{2}+y^{2}+2 y+(z-10)^{2}=3$.
a) 2
b) 1
c) $\sqrt{3}$
d) 3
e) None of the above
4. The distance from the point $\mathcal{S}(5,1,4)$ to the plane $2 x+2 y+z=3$ is
a) $\frac{11}{9}$
b) $\frac{13}{9}$
c) $\frac{11}{3}$
d) $\frac{13}{3}$
e) None of the above
5. Give a geometric description of the set of points whose coordinates satisfy the given condition $x^{2}+y^{2}+z^{2}>1$
a) All points outside the cylinder with radius 1
b) All points outside the sphere of radius 1
c) All points inside the sphere of radius 1
d) All points in space
e) None of the above
6. The unit vector $\overrightarrow{\mathbf{u}}$ that have the same direction of $\overrightarrow{\mathbf{v}}=\langle 4,1,2 \sqrt{2}\rangle$ is
a) $\left\langle\frac{4}{5}, 1, \frac{2 \sqrt{2}}{5}\right\rangle$
b) $\left\langle\frac{4}{5}, \frac{1}{5}, \frac{2 \sqrt{2}}{5}\right\rangle$
c) $\left\langle\frac{4}{7}, 1, \frac{2 \sqrt{2}}{7}\right\rangle$
d) $\left\langle\frac{4}{7}, \frac{1}{7}, \frac{2 \sqrt{2}}{7}\right\rangle$
e) None of the above
7. If $\langle 3 \mathbf{a}-1,6,2 \mathbf{c}+1\rangle=\langle-4,-2 \mathbf{b}, \mathbf{c}\rangle$. Then, the values of \mathbf{a}, \mathbf{b} and \mathbf{c} are
a) $\mathbf{a}=-1, \mathbf{b}=3, \mathbf{c}=-\mathbf{1}$
b) $\mathbf{a}=1, \mathbf{b}=-3, \mathbf{c}=1$
c) $\mathbf{a}=-1, \mathbf{b}=-3, \mathbf{c}=-\mathbf{1}$
d) $\mathbf{a}=-1, \mathbf{b}=-3, \mathbf{c}=\mathbf{1}$
e) None of the above
8. The symmetric equations of the line given by

$$
L: x=1+3 t, y=3-4 t, z=1-2 t \text { is }
$$

a) $\frac{x-1}{3}=\frac{y-3}{-4}=\frac{z-1}{-2}$
b) $\frac{x-1}{-3}=\frac{y-3}{4}=\frac{z+1}{2}$
c) $\frac{x-1}{3}=\frac{y-3}{4}=\frac{z-1}{2}$
d) $\frac{x+1}{3}=\frac{y-3}{-4}=\frac{z-1}{-2}$
e) None of the above
9. Find the triple scalar product $(\vec{u} \times \vec{v}) . \vec{w}$ of the given vectors:

$$
\vec{u}=\vec{i}+\vec{j}+\vec{k} ; \quad \vec{v}=8 \vec{i}+5 \vec{j}+2 \vec{k} ; \quad \vec{w}=9 \vec{i}+6 \vec{j}+4 \vec{k} .
$$

a) 75
b) -3
c) -9
d) 25
e) Cannot be calculated
10. Convert the spherical coordinate $S(10, \pi / 2, \pi / 3)$ to rectangular coordinate.
a) $(5,5 \sqrt{3}, 10)$
b) $(10,5,5 \sqrt{3})$
e) None of the above
c) $(0,5 \sqrt{3}, 5)$
d) $(5,5 \sqrt{3}, 0)$
11. Convert the rectangular coordinate $R(4 \sqrt{3}, 4,-4)$ to cylindrical coordinate
a) $\left(4, \frac{\pi}{3}, 4\right)$
b) $\left(8, \frac{\pi}{6}, 4\right)$
c) $\left(8, \frac{\pi}{3},-4\right)$
d) $\left(8, \frac{\pi}{6},-4\right)$
e) None of the above

From Cylindrical to Rectangular	From Spherical to Cylindrical	From Spherical to Rectangular
$\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta \\ z=z\end{array}\right.$	$\left\{\begin{array}{l}r=\rho \sin \phi \\ \theta=\theta \\ z=\rho \cos \phi\end{array}\right.$	$\left\{\begin{array}{l}x=\rho \sin \phi \cos \theta \\ y=\rho \sin \phi \sin \theta \\ z=\rho \cos \phi\end{array}\right.$
From Rectangular to Cylindrical	From Cylindrical to Spherical	From Rectangular to Spherical
$\left\{\begin{array}{l}r=\sqrt{x^{2}+y^{2}} \\ \tan \theta=\frac{y}{x} \\ z=z\end{array}\right.$	$\left\{\begin{array}{l}\rho=\sqrt{r^{2}+z^{2}} \\ \theta=\theta \\ \tan \phi=\frac{r}{z}\end{array}\right.$	$\left\{\begin{array}{l}\rho=\sqrt{x^{2}+y^{2}+z^{2}} \\ \tan \theta=\frac{y}{x} \\ \cos \phi=\frac{z}{\rho}\end{array}\right.$

Question \#2: [11 marks] Answer each of the following parts

1. [$\mathbf{6}$ marks] Find the traces in the plane $x=0, x=1$ for the quadratic equation $2 x^{2}+y^{2}+z^{2}=4$, what is the name of this surface?

Page 4 of 4

2. [$\mathbf{5}$ marks] Are these two lines parallel, perpendicular, skew?

$$
\begin{aligned}
& L_{1}: x=1+7 t, \quad y=3+t, \quad z=5-3 t \\
& L_{2}: x=4-t, \quad y=6, \quad z=7+2 t
\end{aligned}
$$

