

Philadelphia University Faculty of Science Department of Mathematics

Academemic Year: 2023–2024 Semester: First Semester Exam: Mid-Term Exam Instructor: Dr.Hani Qwareeq Dr.Abdullah Alsoboh Course Name: Calculus 3 Course Number: 250202Duration: 9:45-10:45 am Date: 29/11/2023Section 1, 2, 3, 4

Student Name:..... Student ID:.....

This exam consists of 4 PAGES, 2 QUESTIONS and (30+3 Bonus) total marks. Please show all work needed to arrive at your solutions. GOOD LUCK

Question #1: [22 marks] This question consists of 11 multiple choice questions (2 Mark for each), where each question has 5 options, only one of which is correct. Put the answer symbol in the table below.

Question #	1	2	3	4	5	6	7	8	9	10	11
Answer Symbol											

- 1. The domain of $\vec{r}(t) = \sqrt{5+t} \ \vec{i} + \sqrt{5-t} \ \vec{j} + t^2 \ \vec{k}$ is
 - a) $t \le 5$ b) $|t| \le 5$ c) $|t| \ge 5$ d) $t \ge 5$ e) None of the above
- 2. One of the following equations represent the equation of plane through the point P(2, -10, 3) and perpendicular to the line

$$x = 5 + 4t, y = 2 + 2t, z = 1 + 6t$$

a) 4x + 2y + 6z = 6 b) 4x + 2y + 6z = -5

e) None of the above

c)
$$4x + 2y + 6z = 12$$
 d) $4x + 2y + 6z = -6$

- 3. The radius of the sphere described by the equation $(x+3)^2 + y^2 + 2y + (z-10)^2 = 3$.
 - a) 2 b) 1 c) $\sqrt{3}$ d) 3 e) None of the above
- 4. The distance from the point $\mathcal{S}(5,1,4)$ to the plane 2x + 2y + z = 3 is
 - a) $\frac{11}{9}$ b) $\frac{13}{9}$ c) $\frac{11}{3}$ d) $\frac{13}{3}$ e) None of the above

Page 2 of 4

- 5. Give a geometric description of the set of points whose coordinates satisfy the given condition $x^2+y^2+z^2>1$
 - a) All points outside the cylinder with radius 1
 - b) All points outside the sphere of radius 1
 - c) All points inside the sphere of radius 1
 - d) All points in space
 - e) None of the above

6. The unit vector $\overrightarrow{\mathbf{u}}$ that have the same direction of $\overrightarrow{\mathbf{v}} = \langle 4, 1, 2\sqrt{2} \rangle$ is

a)
$$\left\langle \frac{4}{5}, 1, \frac{2\sqrt{2}}{5} \right\rangle$$
 b) $\left\langle \frac{4}{5}, \frac{1}{5}, \frac{2\sqrt{2}}{5} \right\rangle$ c) $\left\langle \frac{4}{7}, 1, \frac{2\sqrt{2}}{7} \right\rangle$ d) $\left\langle \frac{4}{7}, \frac{1}{7}, \frac{2\sqrt{2}}{7} \right\rangle$ e) None of the above

7. If $\langle 3\mathbf{a} - 1, 6, 2\mathbf{c} + 1 \rangle = \langle -4, -2\mathbf{b}, \mathbf{c} \rangle$. Then, the values of \mathbf{a}, \mathbf{b} and \mathbf{c} are

a) a = -1, b = 3, c = -1 b) a = 1, b = -3, c = 1

e) None of the above

c)
$$\mathbf{a} = -1, \mathbf{b} = -3, \mathbf{c} = -1$$
 d) $\mathbf{a} = -1, \mathbf{b} = -3, \mathbf{c} = \mathbf{1}$

8. The symmetric equations of the line given by

$$L: x = 1 + 3t, y = 3 - 4t, z = 1 - 2t \text{ is}$$

a) $\frac{x-1}{3} = \frac{y-3}{-4} = \frac{z-1}{-2}$ b) $\frac{x-1}{-3} = \frac{y-3}{4} = \frac{z+1}{2}$
c) $\frac{x-1}{3} = \frac{y-3}{4} = \frac{z-1}{2}$ d) $\frac{x+1}{3} = \frac{y-3}{-4} = \frac{z-1}{-2}$ e) None of the above

9. Find the triple scalar product $(\vec{u} \times \vec{v})$. \vec{w} of the given vectors :

$$\vec{u} = \vec{i} + \vec{j} + \vec{k}; \quad \vec{v} = 8\vec{i} + 5\vec{j} + 2\vec{k}; \quad \vec{w} = 9\vec{i} + 6\vec{j} + 4\vec{k}.$$

a) 75 b) -3 c) -9 d) 25 e) Cannot be calculated

- 10. Convert the spherical coordinate $S(10, \pi/2, \pi/3)$ to rectangular coordinate.
 - a) $(5, 5\sqrt{3}, 10)$ b) $(10, 5, 5\sqrt{3})$ c) $(0, 5\sqrt{3}, 5)$ b) $(10, 5, 5\sqrt{3})$ c) None of the above d) $(5, 5\sqrt{3}, 0)$

11. Convert the rectangular coordinate $R(4\sqrt{3}, 4, -4)$ to cylindrical coordinate

a)
$$(4, \frac{\pi}{3}, 4)$$
 b) $(8, \frac{\pi}{6}, 4)$
c) $(8, \frac{\pi}{3}, -4)$ d) $(8, \frac{\pi}{6}, -4)$ e) None of the above

From Cylindrical to Rectangular	From Spherical to Cylindrical	From Spherical to Rectangular		
$\int x = r \cos \theta$	$\int r = \rho \sin \phi$	$\int x = \rho \sin \phi \cos \theta$		
$\begin{cases} y = r\sin\theta \end{cases}$	$\left\{ heta = heta$	$\begin{cases} y = \rho \sin \phi \sin \theta \end{cases}$		
z = z	$z = \rho \cos \phi$	$z = \rho \cos \phi$		
From Rectangular to Cylindrical	From Cylindrical to Spherical	From Rectangular to Spherical		
$\int r = \sqrt{x^2 + y^2}$	$\int \rho = \sqrt{r^2 + z^2}$	$\rho = \sqrt{x^2 + y^2 + z^2}$		
$\tan \theta = \frac{y}{x}$	$\left\{ \theta = \theta \right.$	$ \begin{cases} \tan \theta = \frac{y}{x} \end{cases} $		
z = z	$\tan \phi = \frac{r}{z}$	$\left(\cos\phi = \frac{z}{\rho}\right)$		

Page 3 of 4				
Question #2: $[11 \text{ marks}]$ Answer each of the following parts/11				
1. [6 marks] Find the traces in the plane $x = 0, x = 1$ for the quadratic equation $2x^2 + y^2 + z^2 = 4$, what is the name of this surface?				

Page	4	of	4
1 age	т	or	т

2. [5 marks] Are these two lines parallel, perpendicular, skew? $L_1: x = 1 + 7t, y = 3 + t, z = 5 - 3t$ $L_2: x = 4 - t, y = 6, z = 7 + 2t$			