Course information

Course#	Course title		Prer	equisite	
250202	Calculus (3)		25	0102	
Course type		Cla	ss time	Room #	
□ University R	lequirement	□ Faculty			
Requirement			Sec. 3: Sat. – Mon. 11:15 - 12:30		(710
🖾 Major Requirement		\Box Elective	Sec. 5: 5at. – Mon. 11:15	- 12:30	6719
□ Compulsory					

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Mr. Ahmad Hamdan	S/819	2341	Sat. – Tue. 9:45 – 11:00	<u>ahamdan@philadelphia.edu.jo</u>

Course Delivery Method

Course Delivery Method				
☐ Physical ☐ Online ☐ Blended				
Learning Model				
Precentage	Precentage Synchronous Asynchronous Physical			
			100 %	

Course Description

The course covers various topics, such as three-dimensional space including vectors, lines, and planes. It also includes vector-valued functions, covering the calculus of vector-valued functions, arc length parameterization, curvature, and motion along a curve. Another topic is partial derivatives, which covers limits and continuity, partial derivatives, the chain rule, gradient and directional derivatives, and Lagrange multipliers. Additionally, the course covers multiple and triple integrals, including double integrals over rectangular and non-rectangular regions, double integrals in polar coordinates, and applications such as finding area, surface area, and volume. It also covers triple integrals over rectangular and non-rectangular solids, triple integrals in cylindrical and spherical coordinates, and applications such as finding volume.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes			
	Knowledge				
K1	Recognize the rectangular coordinate systems in three dimensions, and the analytic geometry of lines, planes, and other basic surfaces	Кр1			
K2	Understand the calculus of vector-valued functions	Kp1			
К3	Know the real valued functions of several variables, their graphs: level curves, and level surfaces, and their analytical geometry	Kp1			
	Skills				
S1	Apply the concepts in the course to describe basic characteristics of curves (as curvature) and to explain various physical phenomena	Sp ₂			
S2	Solve optimization problems involving two and three variables.	Sp ₃			
C1	Evaluate double and triple integrals, volumes of bounded solids, and areas of bounded region	Cp ₁			

Learning Resources

Course textbook	Howard Anton, Irl C. Bivens and Stephen Davis, Calculus: Early Transcendentals, 10th Edition, JohnWiley & Sons, Inc. 2013.		
Supporting References	James Stewart, Calculus: Early Transcendentals, 7th Edition , Brooks/ Cole 2012. Saturnino L. Salas, Garret J. Etgen, Einar Hille, Calculus: One and Several Variables, 10th Edition , John Wiley & Sons, Inc. 2007.		
Supporting websites	http://www.sfu.ca/~vjungic/Calculus%203/Calculus3.pdf		
Teaching Environment	⊠Classroom □ laboratory □Learning platform □Other		

Meetings and subject timetable

Week	Торіс	Learning Methodsl	Tasks	Learning Material
1	Three-Dimensional Spaces; Vectors: Rectangular Coordinates in3-Space; Spheres; Cylindrical Surfaces.	Lecture		Ch. 11
2	Vectors Dot Product; Projections.	Lecture		Ch. 11
3	Cross Product. Parametric Equations of Lines.	Lecture		Ch.11
4	Planes in 3-Space.	Lecture		Ch. 11
5	Cylindrical and Spherical Coordinates.	Lecture		Ch.11

[
6	Vector-Valued Functions: Introduction to Vector-Valued Functions	Lecture	Ch.12
7	Calculus of Vector-Valued Functions.	Lecture	Ch.12
8	Arc Length. Unit Tangent, Normal, and Binormal Vectors. Curvature.	Lecture	Ch.12
9	Partial Derivatives: Functions of Two or More Variables. Limits and Continuity.	Lecture	Ch. 13
10	Partial Derivatives. Differentiability.	Lecture	Ch. 13
11	The Chain Rule. Directional Derivatives and Gradients.	Lecture	Ch. 13
12	Tangent Planes and Normal Vectors. Maxima and Minima of Functions of Two Variables.	Lecture	Ch. 13
13	Lagrange multipliers.	Lecture	Ch. 13
14	Multiple Integrals: Double Integrals. Double Integrals over Rectangular and Non-rectangular Regions.	Lecture	Ch. 14
15	Double Integrals in Polar Coordinates, Triple Integrals over rectangular coordinate.	Lecture	Ch. 14
16	Triple Integrals in Cylindrical and Spherical Coordinates. Final Exam	Lecture	Ch. 14

* includes: Lecture, flipped Class, project-based learning, problem-solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology	
Communication skills	
Improve the communication skills of students by giving oral quizzes and discussing the assignments in the class	
Application of concepts learnt	

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	% 30	Week 11	K1,K2
Various Assessments *	% 30	Continued	S_2, C_1
Final Exam	% 40	Week 16	K ₁ ,K ₂ K ₃
Total	%100		

* includes: quizzes, in-class and out-of-class assignments, presentations, reports, videotaped assignments, and group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**	
	Knowledge			
K1	Recognize the rectangular coordinate systems in			
	three dimensions, and the analytic geometry of	Lecture	Quiz	
	lines, planes, and other basic surfaces			
K2	Understand the calculus of vector-valued functions	Lecture	Quiz	
К3	Know the real-valued functions of several variables,			
	their graphs: level curves, and level surfaces, and	Lecture	Assignment	
	their analytical geometry			
	Skills			
S1	Apply the concepts in the course to describe the basic characteristics of curves (as curvature) and to explain various physical phenomena	Lecture	Midterm Exam	
S2	Solve optimization problems involving two and three variables.	Lecture	Midterm Exam	
Competencies				
C1	Evaluate double and triple integrals, volumes of bounded solids, and areas of bounded region	Lecture	Final Exam	

* includes: Lecture, flipped Class, project-based learning, problem-solving based learning, collaborative learning

** includes: quizzes, in-class and out-of-class assignments, presentations, reports, videotaped assignments, and group or individual projects.

Course Policies

Policy	Policy Requirements			
Passing Grade	The minimum passing grade for the course is (50%) and the minimum			
	final mark recorded on the transcript is (35%).			
	• Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment.			
Missing Exams	 A Student who misses an exam or scheduled assessment, for a legitimate reason, must submit an official written excuse within a week from the exam or assessment due date. 			
	• A student who has an excuse for missing a final exam should submit the excuse to the dean within three days of the missed exam date.			
Attendance	The student is not allowed to be absent for more than 15% of the total			
	hours prescribed for the course, which is equivalent to six lecture days (M,			
	W) and seven lectures (S, T, R). If the student misses more than 15% of			
	the total hours prescribed for the course without a satisfactory excuse			

	accepted by the dean of the faculty, he or she will be prohibited from taking the final exam and the grade in that course will be recorded as zero. However, if the absence is due to illness or a valid excuse accepted by the dean of the college, a withdrawal grade will be recorded.	
Academic	Philadelphia University pays special attention to the issue of academic	
Honesty	integrity, and the penalties stipulated in the university's instructions are	
	applied to those who are proven to have committed an act that violates	
	academic integrity, such as: cheating, plagiarism (academic theft),	
	collusion, and violating intellectual property rights.	

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
Kp1	Understanding the main concepts	Calculus (3)	Quizzes	75 % have a degree above 8
Sp ₂	Apply mathematical concepts in real-life problems	Calculus (3)	Assignment	75 % have a degree above 5
Cp1	Apply critical and logical thinking in solving many problems	Calculus (3)	Final Exam	60% have a degree above 20

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment	
Kp ₁	Short quizzes mainly (3) with 5 points each	
Sp ₂	Assignment to solve real-life problems with 5 points	
Cp1	Final Exam with 40 points	

Assessment Rubric of the Program Learning Outcome

Under Construction