Philadelphia University	PHILADELPHIA UNIVERSITY THE WAY TO THE FUTURE	Approval date:
Faculty of Science		Issue:
Department of Math		Credit Hours: 3
Academic Year 2023/2024	Course Syllabus	Bachelor

Course information

Course\#	Course title			$\begin{gathered} \hline \hline \text { Prerequisite } \\ \hline \mathbf{0 2 5 0 2 5 1} \end{gathered}$
0250342	Abstract Algebra 1			
Course type		Section	Class time	Room \#
$\begin{aligned} & \square \text { University } \\ & \boxtimes \text { Major Req } \end{aligned}$	Faculty Requirement Elective \boxtimes Compulsory	3	Sat. 8:15-9:30	6717

Instructor Information

Name	Office No.	Phone	Office Hours	E-mail
Ahmad Hamdan	Sci. 819	2341	Sat.-Tue. 10:10-11:00 Sun. Tue. 12:40-13:30	ahamdan@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method			
\boxtimes Physical	\square Online	\square Blended	
Learning Model			
Percentage	Synchronous	Asynchronous	Physical
	$\mathbf{0 \%}$	$\mathbf{0 \%}$	$\mathbf{1 0 0 \%}$

Course Description

This course introduces topics in group theory: groups, subgroups, abelian groups, cyclic groups, normal subgroups, groups of permutations, Alternating groups, the Theorem of Lagrange, direct products, homomorphisms, factor groups, Isomorphism Theorems.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes *
Knowledge		
K1	Define and give examples of groups.	$K_{p} \mathbf{1}$
K2	Understand subgroups and test them.	$K_{p} \mathbf{2}$
K3	Recognize the cyclic groups.	$K_{p} \mathbf{1}$
K4	Describe the cosets and their elements	$K_{p} \mathbf{1}$
K5	Understand the permutation groups and the dihedral groups.	$K_{p} \mathbf{1}$
K6	Understand isomorphism theorems of groups and apply them.	$K_{p} \mathbf{2}$
K7	Understand the factor groups and calculate them.	$K_{p} \mathbf{2}$
S1	Finding examples for theorems.	$S_{p} \mathbf{1}$
S2	Reading and writing mathematical proofs.	$S_{p} \mathbf{1}$

S3	Extend the concepts of mathematics to abstract notions.	$S_{p} \mathbf{1}$
C1	Gaining knowledge and experience of working with many pure mathematical problems.	$C_{p} \mathbf{4}$
C2	Working independently and managing time wisely.	$C_{p} \mathbf{2}$

* According to learning outcomes of the faculty of pharmacy.

Learning Resources

Course textbook	Joseph A. Gallian, Contemporary Abstract Algebra, $10^{\text {th }}$ Edition 2021, Taylor \& Francis Group, LLC.
Supporting References	-John B. Fraleigh, A First Course in Abstract Algebra, $7^{\text {th }}$ Edition 2003, Addison Wesley. -II.N. Herstein, Topics in Algebra, $2^{\text {nd }}$ Edition 1975, Wiley.
Supporting websites	https://www.d.umn.edu/~jgallian/
Teaching Environment	区Classroom \square laboratory \square Learning platform \square Other

Meetings and Subjects Timetable

Week	Topic	Learning Methods	Tasks	Learning Material
1	Explanation of the study plan for the course, and what is expected to be accomplished by the students. Technology Preliminaries: Moodle. Introduction to Groups	Lecture		Course Syllabus Suggested Questions for Practice
2	Elementary Properties of Groups.	Lecture		$\begin{gathered} \text { Ch2: } \mathbf{4 , 5 , 6 , 7 , 8 , 9 , 1 1 , 1 6 , 2 2 ,} \\ 25,26,27,32,33,34,35,38,49 \end{gathered}$
3	Finite Groups and Subgroups.	Lecture		$\begin{gathered} \text { Ch3: 1,2,4,6,15,18,19,20, } \\ \text { 26,32,33,34,37,42,45,46,53, } \\ \mathbf{6 7 , 6 9 , 7 9} \end{gathered}$
4-5	Cyclic Groups.	Lecture	$\begin{gathered} \text { Quiz } \\ \text { (10 pts) } \end{gathered}$	$\begin{aligned} & \text { Ch4: 1,2,5,7,8,10,12,13,21, } \\ & \text { 28,29,33,37,40,55,63,65,74 } \end{aligned}$
5-6	Permutation Groups.	Lecture		$\begin{array}{r} \text { Ch5:1,3,5,6,10,11,16,19,24, } \\ \mathbf{2 7 , 2 8 , 2 9 , 3 2 , 3 4 , 3 6 , 3 7 , 4 2 , 4 5} \end{array}$
7	Isomorphisms.	Lecture		$\begin{array}{r} \text { Ch6: 1,3,4,5,7,9,10,11, } \\ \mathbf{1 4 , 1 7 , 2 0 , 2 4 , 2 8 , 3 5 , 3 7} \end{array}$
8	Cosets and Lagrange's Theorem.	Lecture		$\begin{gathered} \text { Ch7: } 1,2,3,4,5,7,8,15,16, \\ 17,22,25,34 \end{gathered}$
9	External Direct Product. Quotient Groups.	Lecture	$\begin{aligned} & \text { Quiz } \\ & \text { (10 pts) } \end{aligned}$	$\begin{gathered} \text { Ch8:3,5,6,7,8,9,11,12,15,16 } \\ \mathbf{1 8 , 2 0 , 2 2 , 2 6 , 3 1 , 3 6 , 3 9 , 4 2 , 5 2 ,} \\ 53 \end{gathered}$
10	Normal Subgroups..	Lecture		
11	Factor Groups.	Lecture		$\begin{aligned} & \text { Ch9:1,2,6,7,8,11,12,13,14, } \\ & \mathbf{1 5 , 1 7 , 1 8 , 1 9 , 2 4 , 2 7 , 3 7 , 3 8 , 4 3 ,} \\ & \mathbf{5 4} \end{aligned}$
12	Group Homomorphisms.	Lecture		
13	Isomorphism Theorems.	Lecture	Assign ment	$\begin{gathered} \text { Ch10: 8,9,11,14,15,16,17, } \\ \mathbf{1 8 , 2 0 , 2 1 , 2 4 , 2 5 , 3 1 , 3 2 , 3 3 , 3 4 ,} \\ \mathbf{3 5 , 4 0 , 4 7 , 4 8 , 4 9 , 5 6 , 5 8} \end{gathered}$
14	The Group of Automorphisms.	Lecture		
15	Classification of Groups of small orders.	Lecture		$\text { Ch 11: } \mathbf{\substack { \mathbf { 2 } , \mathbf { 3 } , 4 , 7 , 8 , 9 , 1 3 , 1 5 , \\ \mathbf { 3 3 , 4 3 , 4 6 } }}$
16	Final Exam			

[^0]Course Contributing to Learner Skill Development

Using Technology

Communication Skills

Improve the communication skills of the student by giving oral quizzes and discuss the assignments at the class

Application of Concepts Learnt

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	$\mathbf{3 0 \%}$	$\mathbf{8}$	$\mathbf{K 1 , ~ K 2 , K 3 , K 4 , ~ C 1 ~}$
Various Assessments*	$\mathbf{3 0 \%}$	Continuous	S1, S2, S3, C1, C2 Final Exam
40\%	$\mathbf{1 5}$	K1, K2, K3, K4, K5, K6, K7 C1	
Total	$\mathbf{1 0 0 \%}$		

* Includes: quizzes, In-class and out-of-class assignments, presentations, reports, videotaped assignments, and group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes					
Knowledge						
Learning Method*						
Assessment Method**						
K1	Define and give examples of groups.	Lecture	Exam			
K2	Understand subgroups and test them.	Lecture	Quiz			
K3	Recognize the cyclic groups.	Lecture	Exam			
K4	Describe the cosets and their elements	Exam				
K5	Understand the permutation groups and the dihedral groups.	Lecture	Exam			
K6	Understand the isomorphism theorems of groups and apply them.	Lecture	Exam			
K7	Understand the factor groups and calculate them.	Lecture	Exam			
Skills					Lecture	Assignment
S1	Finding examples for theorems.	Problem- Solving	Quiz			
S2	Reading and writing mathematical proofs.	Quiz				
S3	Extend the concepts of mathematics to abstract notions.	Lecture	Competencies			
C1	Gaining knowledge and experience in working with many pure mathematical problems.	Discussion	Assignment			
C2	Working independently and managing time wisely.	Discussion	Assignment			

* Includes: Lecture, flipped Class, project-based learning, problem-solving-based learning, collaborative learning
** Includes quizzes, in-class and out-of-class assignments, presentations, reports, videotaped assignments, and group or individual projects.

Course Policies

Policy	Policy Requirements
Passing Grade	The minimum passing grade for the course is (50\%) and the minimum final mark recorded on the transcript is (35\%).

| - | Missing an exam without a valid excuse will result in a zero grade to be
 assigned to the exam or assessment. |
| :--- | :--- | :--- |
| Exams | A Student who misses an exam or scheduled assessment, for a legitimate
 reason, must submit an official written excuse within a week from an exam
 or assessment due date.
 A student who has an excuse for missing a final exam should submit the
 excuse to the dean within three days of the missed exam date. |
| Attendance | The student is not allowed to be absent more than (15\%) of the total hours
 prescribed for the course, which equates to six lecture days (M, W) and six
 lectures (S, T). If the student misses more than (15\%) of the total hours
 prescribed for the course without a satisfactory excuse accepted by the dean
 of the faculty, s/he will be prohibited from taking the final exam, and the grade
 in that course is considered (zero), but if the absence is due to illness or a
 compulsive excuse accepted by the dean of the college, then withdrawal grade
 will be recorded. |
| Academic | Philadelphia University pays special attention to the issue of academic
 integrity, and the penalties stipulated in the university's instructions are
 Honesty |
| aplied to those who are proven to have committed an act that violates
 academic integrity, such as: cheating, plagiarism (academic theft), collusion,
 and violating intellectual property rights. | |

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
$\boldsymbol{K}_{\boldsymbol{p}} \mathbf{1}$	Understand the main concepts of groups and subgroups and identify different types of them.	Abstract Algebra 1	Quizzes +Exams	75% of the students have a degree above $8 / 10$
$\boldsymbol{K}_{\boldsymbol{p}} \mathbf{2}$	Use Isomorphisms theorems to find and classify different groups.	Abstract	Algebra 1	Quizzes + Exams
$\boldsymbol{S}_{\boldsymbol{p}} \mathbf{1}$	65% of the students have a degree above $7 / 10$			
Write Abelian and Non-Abelian groups that satisfy the theorem conditions	Abstract Algebra 1	Assignment + Exams + Quizzes	100% of the students have a degree above $8 / 10$	

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment
$\boldsymbol{K}_{\boldsymbol{p}} \mathbf{1}$	Short quizzes mainly (2) with 10 points each
$\boldsymbol{K}_{\boldsymbol{p}} \mathbf{2}$	Short quizzes mainly (2) with 10 points each
$\boldsymbol{S}_{\boldsymbol{p}} \mathbf{1}$	Assignment with 10 points

Assessment Rubric of the Program Learning Outcome
Construct during the course.

[^0]: * Includes: Lecture, flipped Class, project-based learning, problem-solving based learning, collaborative learning

