Philadelphia University

Faculty of Science

PHILADELPHIA UNIVERSITY THE WAY TO THE FUTURE

Approval date:

Issue:

Department of Math Academic Year 2023/2024

Course Syllabus

Bachelor

Credit Hours: 3

Course information

Course#	Course title				equisite
0250342	Abstract Algebra 1				50251
Course type			Class time Room		Room #
University Requirement Faculty Requirement		2	Sot 9.15	0.20	6717
🛛 Major Requirem	ent \Box Elective \boxtimes Compulsory	3	Sat. 8:13 -	9.30	0/1/

Instructor Information

Name	Office No.	Phone	Office Hours	E-mail
Ahmad Hamdan	Sci. 819	2341	Sat.–Tue. 10:10 – 11:00 Sun. Tue. 12:40 – 13:30	ahamdan@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method				
☐ Physical ☐ Online ☐ Blended				
Learning Model				
B Synchronous Asynchronous Physical				
rercentage	0%	0%	100%	

Course Description

This course introduces topics in group theory: groups, subgroups, abelian groups, cyclic groups, normal subgroups, groups of permutations, Alternating groups, the Theorem of Lagrange, direct products, homomorphisms, factor groups, Isomorphism Theorems.

Course Learning Outcomes

Number	Outcomes	Corresponding Program outcomes *
	Knowledge	
K1	Define and give examples of groups.	$K_p 1$
K2	Understand subgroups and test them.	$K_p 2$
К3	Recognize the cyclic groups.	$K_p 1$
K4	Describe the cosets and their elements	$K_p 1$
K5	Understand the permutation groups and the dihedral groups.	$K_p 1$
K6	Understand isomorphism theorems of groups and apply them.	$K_p 2$
K7	Understand the factor groups and calculate them.	$K_p 2$
S1	Finding examples for theorems.	$S_p 1$
S2	Reading and writing mathematical proofs.	<i>S</i> _p 1

S 3	Extend the concepts of mathematics to abstract notions.	<i>S</i> _p 1
C1	Gaining knowledge and experience of working with many pure mathematical problems.	<i>C</i> _p 4
C2	Working independently and managing time wisely.	<i>C</i> _p 2

* According to learning outcomes of the faculty of pharmacy.

Learning Resources

Course textbook	Joseph A. Gallian, Contemporary Abstract Algebra , 10 th Edition 2021, Taylor & Francis Group, LLC.		
Supporting References	 -John B. Fraleigh, A First Course in Abstract Algebra, 7th Edition 2003, Addison Wesley. -II.N. Herstein, Topics in Algebra, 2nd Edition 1975, Wiley. 		
Supporting websites	https://www.d.umn.edu/~jgallian/		
Teaching Environment	⊠Classroom □ laboratory □Learning platform □Other		

Meetings and Subjects Timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
1	Explanation of the study plan for the course, and what is expected to be accomplished by the students. Technology Preliminaries: Moodle. Introduction to Groups	Lecture		Course Syllabus Suggested Questions for Practice
2	Elementary Properties of Groups.	Lecture		Ch2: 4,5,6,7,8,9,11,16,22, 25,26,27,32,33,34,35,38,49
3	Finite Groups and Subgroups.	Lecture		Ch3: 1,2,4,6,15,18,19,20, 26,32,33,34,37,42,45,46,53, 67, 69,79
4-5	Cyclic Groups.	Lecture	Quiz (10 pts)	Ch4: 1,2,5,7,8,10,12,13,21, 28,29,33,37,40,55,63,65,74
5-6	Permutation Groups.	Lecture	`	Ch5:1,3,5,6,10,11,16,19,24, 27,28,29,32,34,36,37,42,45
7	Isomorphisms.	Lecture		Ch6: 1,3,4,5,7,9,10,11, 14,17,20,24,28,35,37
8	Cosets and Lagrange's Theorem.	Lecture		Ch7: 1,2,3,4,5,7,8,15, 16, 17, 22,25,34
9	External Direct Product. Quotient Groups.	Lecture	Quiz (10 pts)	Ch8:3,5,6,7,8,9,11,12,15,16 18,20,22,26,31,36,39,42,52, 53
10	Normal Subgroups	Lecture		
11	Factor Groups.	Lecture		Ch9:1,2,6,7,8,11,12,13,14, 15,17,18,19,24,27,37,38,43, 54
12	Group Homomorphisms.	Lecture		
13	Isomorphism Theorems.	Lecture	Assign ment	Ch10: 8,9,11,14,15,16,17, 18,20,21,24,25,31,32,33,34, 35,40,47,48,49,56,58
14	The Group of Automorphisms.	Lecture		
15	Classification of Groups of small orders.	Lecture		Ch 11: 1,2,3,4,7,8,9,13, 15, 33,43,46
16	Final Fyam			

 10
 Final Exam

 * Includes: Lecture, flipped Class, project-based learning, problem-solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology

Communication Skills

Improve the communication skills of the student by giving oral quizzes and discuss the assignments at the class

Application of Concepts Learnt

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	30%	8	K1, K2,K3,K4, C1
Various Assessments *	30%	Continuous	S1, S2, S3, C1, C2
Final Exam	40%	15	K1, K2, K3, K4, K5, K6, K7 C1
Total	100%		

* Includes: quizzes, In-class and out-of-class assignments, presentations, reports, videotaped assignments, and group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**			
Knowledge						
K1	Define and give examples of groups.	Lecture	Exam			
К2	Understand subgroups and test them.	Lecture	Quiz			
К3	Recognize the cyclic groups.	Lecture	Exam			
K4	Describe the cosets and their elements	Lecture	Exam			
К5	Understand the permutation groups and the dihedral groups.	Lecture	Exam			
K6	Understand the isomorphism theorems of groups and apply them.	Lecture	Exam			
K7	Understand the factor groups and calculate them.	Lecture	Exam			
	Skills					
S1	Finding examples for theorems.	Lecture	Assignment			
S2	Reading and writing mathematical proofs.	Problem- Solving	Quiz			
S 3	Extend the concepts of mathematics to abstract notions.	Lecture	Quiz			
	Competencies					
C1	Gaining knowledge and experience in working with many pure mathematical problems.	Discussion	Assignment			
C2	Working independently and managing time wisely.	Discussion	Assignment			

* Includes: Lecture, flipped Class, project-based learning, problem-solving-based learning, collaborative learning ** Includes quizzes, in-class and out-of-class assignments, presentations, reports, videotaped assignments, and group or individual projects.

Course Policies

Policy	Policy Requirements
Passing Grade	The minimum passing grade for the course is (50%) and the minimum final
	mark recorded on the transcript is (35%).

Missing Exams	 Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment. A Student who misses an exam or scheduled assessment, for a legitimate reason, must submit an official written excuse within a week from an exam or assessment due date. A student who has an excuse for missing a final exam should submit the excuse to the dean within three days of the missed exam date.
Attendance	The student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lecture days (M, W) and six lectures (S, T). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory excuse accepted by the dean of the faculty, s/he will be prohibited from taking the final exam, and the grade in that course is considered (zero), but if the absence is due to illness or a compulsive excuse accepted by the dean of the college, then withdrawal grade will be recorded.
Academic Honesty	Philadelphia University pays special attention to the issue of academic integrity, and the penalties stipulated in the university's instructions are applied to those who are proven to have committed an act that violates academic integrity, such as: cheating, plagiarism (academic theft), collusion, and violating intellectual property rights.

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
K _p 1	Understand the main concepts of groups and subgroups and identify different types of them.	Abstract Algebra 1	Quizzes +Exams	75% of the students have a degree above 8/10
$K_p 2$	Use Isomorphisms theorems to find and classify different groups.	Abstract Algebra 1	Quizzes + Exams	65% of the students have a degree above 7/10
<i>S</i> _p 1	Write Abelian and Non-Abelian groups that satisfy the theorem conditions	Abstract Algebra 1	Assignment + Exams + Quizzes	100% of the students have a degree above 8/10

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment
$K_p 1$	Short quizzes mainly (2) with 10 points each
$K_p 2$	Short quizzes mainly (2) with 10 points each
<i>S</i> _p 1	Assignment with 10 points

Assessment Rubric of the Program Learning Outcome

Construct during the course.