Chapter 7

Acid-Base Equilibria
Acid-Base Theories

• **Arrhenius theory** (Nobel Prize)

An acid is any substance that ionizes (partially or completely) in water to give *hydrogen ions, H\(^+\)* (which associate with the solvent to give hydronium ions, H\(_3\)O\(^+\))

\[
\text{HA} + \text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ + \text{A}^-
\]

• A base: any substance that ionizes in water to give *hydroxyl ions* OH\(^-\). Weak (partially ionized) bases generally ionize as follows:

\[
\text{B} + \text{H}_2\text{O} \rightleftharpoons \text{BH}^+ + \text{OH}^-
\]

• strong bases such as metal hydroxides (e.g., NaOH) dissociate as

\[
\text{M(OH)}_n \rightleftharpoons \text{M}^{n+} + n\text{OH}^-
\]
THEORY OF SOLVENT SYSTEMS

- solvent ionizes to give a cation and an anion; for example,
 \[\text{2H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ + \text{OH}^- \]
 \[\text{2NH}_3 \rightleftharpoons \text{NH}_4^+ + \text{NH}_2^- \]

- According to this theory:
 Acid is defined as a solute that yields the cation of the solvent
 Base is a solute that yields the anion of the solvent.

- Thus, \(\text{NH}_4\text{Cl} \) is a strong acid in liquid ammonia similar to \(\text{HCl} \) in water:
 \[\text{HCl} + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{Cl}^- \]
• NaNH$_2$ is a strong base in ammonia (similar to NaOH in water);
• both of these compounds ionize to give the solvent cation and anion, respectively.
• Ethanol ionizes as follows:
• $2\text{C}_2\text{H}_5\text{OH} \rightleftharpoons \text{C}_2\text{H}_5\text{OH}_2^+ + \text{C}_2\text{H}_5\text{O}^-$
• Hence, sodium ethoxide, NaOC$_2$H$_5$, is a strong base in this solvent.
BRONSTED-LOWRY THEORY

• The theory of solvent systems is suitable for ionizable solvents, but it is not applicable to acid-base reactions in nonionizable solvents such as benzene or dioXane.

• In 1923, Bronsted and Lowry separately described what is now known as the Bronsted-Lowry theory.

• This theory states that an acid is any substance that can donate a proton, and a base is any substance that can accept a proton.

• Thus, we can write a "half-reaction"

\[
\text{Acid} = \text{H}^+ + \text{Base}
\]

The acid and the base are called “Conjugate pairs”
Bronsted acid-base reactions

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Acid₁</th>
<th>Base₂</th>
<th>→</th>
<th>Acid₂</th>
<th>Base₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃ (liq.)</td>
<td>HOAc</td>
<td>NH₃</td>
<td>→</td>
<td>NH₄⁺</td>
<td>OAc⁻</td>
</tr>
<tr>
<td>H₂O</td>
<td>HCl</td>
<td>H₂O</td>
<td>H₃O⁺</td>
<td>Cl⁻</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>NH₄⁺</td>
<td>H₂O</td>
<td>H₃O⁺</td>
<td>NH₃</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>H₂O</td>
<td>OAc⁻</td>
<td>HOAc</td>
<td>OH⁻</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>HCO₃⁻</td>
<td>OH⁻</td>
<td>H₂O</td>
<td>CO₃²⁻</td>
<td></td>
</tr>
<tr>
<td>C₂H₅OH</td>
<td>NH₄⁺</td>
<td>C₂H₅O⁻</td>
<td>C₂H₅OH</td>
<td>NH₃</td>
<td></td>
</tr>
<tr>
<td>C₆H₆</td>
<td>H picrate</td>
<td>C₆H₅NH₂</td>
<td>C₆H₅NH₃⁺</td>
<td>picrate</td>
<td></td>
</tr>
</tbody>
</table>
LEWIS THEORY

• Acid is a substance that can accept an electron pair.
• Base is a substance that can donate an electron pair. The latter frequently contains an oxygen or a nitrogen as the electron donor.
• Thus, non-hydrogen-containing substances are included as acids.
• Examples of acid-base reactions in the Lewis theory are as follows:
• \(H^+ \text{(solvated)} + :NH_3 \rightarrow H:NH_3^+ \)
Lewis Acid

\[
\text{AlCl}_3 + :O \rightarrow \text{Cl}_3\text{Al}:\text{OR}_2
\]

\[
\text{H} \underset{O:}{\overset{+ \text{H}^+}{\rightarrow}} \text{H}_2\text{O}:\text{H}^+
\]

\[
\text{H}^+ + :\text{OH}^- \rightarrow \text{H}:\text{OH}
\]
Acid-Base Equilibria in Water

• When an acid or base is dissolved in water, it will **dissociate**, or **ionize**.

• The amount (degree) of ionization is dependent on the strength of the acid.

• A "strong" electrolyte is completely dissociated, while a "weak" electrolyte is partially dissociated.
Strong and weak electrolytes

<table>
<thead>
<tr>
<th>Strong</th>
<th>Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>HC$_2$H$_3$O$_2$ (acetic acid)</td>
</tr>
<tr>
<td>HClO$_4$</td>
<td>NH$_3$</td>
</tr>
<tr>
<td>H$_2$SO$_4$a</td>
<td>C$_6$H$_5$OH (phenol)</td>
</tr>
<tr>
<td>HNO$_3$</td>
<td>HCHO$_2$ (formic acid)</td>
</tr>
<tr>
<td>NaOH</td>
<td>C$_6$H$_5$NH$_2$ (aniline)</td>
</tr>
<tr>
<td>NaC$_2$H$_3$O$_2$</td>
<td></td>
</tr>
</tbody>
</table>

aThe first proton is completely ionized in dilute solution, but the second proton is partially ionized ($K_i = 10^{-2}$).
Dissociation of weak acids

Thermodynamic acidity constant, \(K^o_a \)

\[
\text{HOAc} + \text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ + \text{OAc}^-
\]

\[
K^o_a = \frac{a_{\text{H}_3\text{O}^+} \cdot a_{\text{OAc}^-}}{a_{\text{HOAc}} \cdot a_{\text{H}_2\text{O}}}
\]

In dilute solutions, the activity of water remains essentially constant, and is taken as unity at standard state.

\[
K^o_a = \frac{a_{\text{H}_3\text{O}^+} \cdot a_{\text{OAc}^-}}{a_{\text{HOAc}}}
\]
Thermodynamic autoprotolysis/Self-ionization constant

Pure water ionizes slightly, or undergoes autoprotolysis:

\[2\text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ + \text{OH}^- \]

\[
K_w^o = \frac{a_{\text{H}_3\text{O}^+} \cdot a_{\text{OH}^-}}{a_{\text{H}_2\text{O}}^2}
\]

\[
K_w^o = a_{\text{H}_3\text{O}^+} \cdot a_{\text{OH}^-}
\]
Molar equilibrium constant/ Acid dissociation constant, K_a

$$K_a = \frac{[H^+][OAc^-]}{[HOAc]}$$

HCl \rightarrow H$^+$ + Cl$^-$

HOAc \rightleftharpoons H$^+$ + OAc$^-$

The product of the hydrogen ion concentration and the hydroxyl ion concentration in aqueous solution is *always* equal to 1.0×10^{-14}

Except when the hydrogen ion concentration from the acid is very small, 10-6 M or less, any contribution to [H+] from the ionization of water can be neglected.

$$[H^+] [OH^-] = 1.0 \times 10^{-14}$$
A \(1.0 \times 10^{-3}\) \(M\) solution of hydrochloric acid is prepared. What is the hydroxyl ion concentration?
The pH scale

• It is more convenient to compress the acidity scale by placing it on a logarithm basis.

• The pH of a solution was defined by Sorenson as

\[
pH = -\log [H^+] \\
pOH = -\log [OH^-]
\]
\[K_w = [H^+][OH^-] \]

\[-\log K_w = -\log[H^+][OH^-] = -\log[H^+] - \log[OH^-] \]

\[pK_w = pH + pOH \]

\[14.00 = pH + pOH \]
Example

1. Calculate the pOH and the pH of a 5.0×10^{-2} M solution of NaOH

2. Calculate the pH of a solution prepared by mixing 2.0 mL of a strong acid solution of pH 3.00 and 3.0 mL of a strong base of pH 10.00.
Example

• The pH of a solution is 9.67. Calculate the hydrogen ion concentration in the solution.

\[
[H^+] = 10^{-pH}
\]
pH and acidity and alkalinity

- When \([H^+] = [OH^-]\), the solution neutral.
- If \([H^+] > [OH^-]\), the solution acidic.
- If \([H^+] < [OH^-]\), the solution is alkaline.
- In pure water at 25°C \([H^+] = [OH^-]\),
 \[pH = pOH = 7\]
- A solution of \(pH < 7\) is acidic
- A solution of \(pH > 7\) is alkaline (or basic)
Comments on basicity and acidity

• Is there a pH of negative value?

• How about the pH value of a solution that contains 1×10^{-8} M HCl?

• If the concentration of an acid or base is much less than 10^{-7} M, then its contribution to the acidity or basicity will be negligible compared to the contribution from water.
Example

• Calculate the pH and pOH of a 1.0 X 10^{-7} M solution of HCl.

\[\text{HCl} \rightarrow \text{H}^+ + \text{Cl}^- \]
\[\text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{OH}^- \]
\[[\text{H}^+][\text{OH}^-] = 1.0 \times 10^{-14} \]
\[[\text{H}^+]_{\text{H}_2\text{O} \text{ diss.}} = [\text{OH}^-]_{\text{H}_2\text{O} \text{ diss.}} = x \]

Since the hydrogen ions contributed from the ionization of water are not negligible compared to the HCl added,

\[[\text{H}^+] = C_{\text{HCl}} + [\text{H}^+]_{\text{H}_2\text{O} \text{ diss.}} \]
\[
([H^+]_{\text{HCl}} + x)(x) = 1.0 \times 10^{-14}
\]
\[
(1.00 \times 10^{-7} + x)(x) = 1.0 \times 10^{-14}
\]
\[
x^2 + 1.00 \times 10^{-7} x - 1.0 \times 10^{-14} = 0
\]

\[
x = \frac{-1.00 \times 10^{-7} \pm \sqrt{1.0 \times 10^{-14} + 4(1.0 \times 10^{-14})}}{2} = 6.2 \times 10^{-8} \text{ M}
\]

Therefore, the total H\(^+\) concentration = \((1.00 \times 10^{-7} + 6.2 \times 10^{-8}) = 1.62 \times 10^{-7} \text{ M}:

\[
pH = -\log 1.62 \times 10^{-7} = 7 - 0.21 = 6.79
\]

\[
pOH = 14.00 - 6.79 = 7.21
\]

or, since [OH\(^-\)] = x,

\[
pOH = -\log(6.2 \times 10^{-8}) = 8 - 0.79 = 7.21
\]
Comments

• The calculation in this example is more academic than practical because carbon dioxide from the air dissolved in water exceeds these concentrations.

• Since carbon dioxide in water forms an acid, extreme care would have to be taken to remove and keep this from the water, to have a solution of $10^{-7} \, M$ acid.

• We usually neglect the contribution of water to the acidity in the presence of an acid since its ionization is suppressed in the presence of the acid.
pH and temperature

- Does pH change with temperature? If yes, why?
- $K_w = 5.5 \times 10^{-13}$ at $100^\circ C$

\[
[H^+] = [OH^-] = \sqrt{5.5 \times 10^{-13}} = 7.4 \times 10^{-7} \text{ M}
\]

$pH = pOH = 6.13$

$pK_w = 12.26 = pH + pOH$

- The pH of blood at body temperature ($37^\circ C$) is 7.35 - 7.45.
- This value represents a slightly more alkaline solution relative to neutral water than the same value would be at room temperature.
- At $37^\circ C$, $K_w = 2.5 \times 10^{14}$ and $pK_w = 13.60$.
- The pH (and pOH) of a neutral solution is $13.60/2 = 6.80$.
- The $[H^+] = [OH^-] = 1.6 \times 10^{-7} \text{ M}$

- Since a neutral blood solution at $37^\circ C$ would have pH 6.8
pH and temperature

• Since a neutral blood solution at 37°C would have pH 6.8.
• A blood pH of 7.4 is more alkaline at 37°C by 0.2 pH units than it would be at 25°C.
• This is important when one considers that a change of 0.3 pH units in the body is extreme.
• The HCl concentration in the stomach is about 0.1 to 0.02 M.
• Since, the pH at 0.02 M would be 1.7.
• It will be the same regardless of the temperature since the hydrogen ion concentration is the same and the same pH would be measured at either temperature.
• But, while the pOH would be 14.0 - 1.7 = 12.3 at 25°C, it is 13.6 - 1.7 = 11.9 at 37°C.
pH of the weak acids and bases

• pH and pOH are determined readily from the concentration of the acid or base.
• Weak acids (or bases) are only partially ionized.
• Most organic acids and bases, as found in clinical applications, are weak.
• The ionization constant can be used to calculate the amount ionized and, from this, the pH.
pH of the weak acids

\[\text{HOAc} \rightleftharpoons \text{H}^+ + \text{OAc}^- \]

\[
\frac{[\text{H}^+][\text{OAc}^-]}{[\text{HOAc}]} = 1.75 \times 10^{-5}
\]

Calculate the pH and pOH of a \(1.00 \times 10^{-3}\) M solution of acetic acid.

\[\text{HOAc} \rightleftharpoons \text{H}^+ + \text{OAc}^- \]

<table>
<thead>
<tr>
<th></th>
<th>(1.00 \times 10^{-3})</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change ((x = \text{mmol/mL}))</td>
<td>(-x)</td>
<td>(+x)</td>
<td>(+x)</td>
</tr>
<tr>
<td>Equilibrium</td>
<td>(1.00 \times 10^{-3} - x)</td>
<td>(x)</td>
<td>(x)</td>
</tr>
</tbody>
</table>

\[
\frac{(x)(x)}{1.00 \times 10^{-3} - x} = 1.75 \times 10^{-5}
\]
• If \(x \) less than about 10 or 15% of the acid is ionized, the expression may be simplified by neglecting \(x \) compared with \(C \) (10\(^{-3} \) M in this case).

• The simplification applies if \(K_a \) is smaller than about \(0.01 \) \(C \), that is, smaller than \(10^{-4} \) at \(C = 0.01 \) M, \(10^{-3} \) at \(C = 0.1 \) M, and so forth.

• Under these conditions, the error in calculation is 5% or less (results come out too high)

• If \(C_{HA} > 100K_a \), \(x \) can be neglected compared to \(C_{HA} \).

\[
\frac{x^2}{1.00 \times 10^{-3}} = 1.75 \times 10^{-15}
\]

\[
x = 1.32 \times 10^{-4} \text{ M} \equiv [H^+]
\]

In General

\[
x = [H^+] = \sqrt{k_a C_A}
\]
pH of the weak bases

The basicity constant K_b for ammonia is 1.75×10^{-5} at 25°C. (It is only coincidental that this is equal to K_a for acetic acid.) Calculate the pH and pOH for a 1.00×10^{-3} M solution of ammonia.

$$\begin{align*}
\text{NH}_3 + \text{H}_2\text{O} & \rightleftharpoons \text{NH}_4^+ + \text{OH}^- \\
(1.00 \times 10^{-3} - x) & \quad x \\
\frac{[\text{NH}_4^+][\text{OH}^-]}{[\text{NH}_3]} & = 1.75 \times 10^{-5}
\end{align*}$$
pH of salts of weak acids and bases

• Salts of weak acids or weak bases are completely ionized
 • NaOAc → Na⁺ + OAc⁻
 • NH₄Cl → NH₄⁺ + Cl⁻
 • BHCl → BH⁺ + Cl⁻
• Anions of salts of weak acids are Bronsted bases
 • Oac⁻ + H₂O ⇌ HOAc⁻ + OH⁻
• Cations of salts of weak bases are Bronsted acids
 • BH⁺ + H₂O ⇌ B + H₃O⁺
• Anions and cations of strong acids or strong bases are neutral
This ionization is known as **hydrolysis** and its equilibrium constant may be called **Hydrolysis constant** or the **basicity constant** of the salt.

Thus for a conjugate acid-base, always:

\[K_w = K_a \times K_b \]
pH of salts of weak acids, HA

\[A^- + H_2O \rightleftharpoons HA + OH^- \]

\[\frac{[HA][OH^-]}{[A^-]} = \frac{K_w}{K_a} = K_b \]

\[A^- + H_2O \rightleftharpoons HA + OH^- \]

\[(C_{A^-} - x) \quad x \quad x \]

\[K_b = \frac{k_w}{k_a} = \frac{x^2}{C_{A^-} - x} \approx \frac{x^2}{C_{A^-}} \]

\[\frac{[OH^-][OH^-]}{C_{A^-}} = \frac{K_w}{K_a} = K_b \]

\[[OH^-] = \sqrt{\frac{K_w}{K_a} \cdot C_{A^-}} = \sqrt{K_b \cdot C_{A^-}} \]

\[C_{A^-} = C_{salt} \]

This equation holds only if:

\[C_A > 100 \cdot k_b \text{ and } x \text{ can be neglected compared to } C_{A^-} \]
pH of salts of weak bases, BHA

BHA \rightarrow BH$^+$ + A$^-$

\[
\text{BH}^+ + \text{H}_2\text{O} \rightleftharpoons \text{B} + \text{H}_3\text{O}^+ \\
K_H = K_a = \frac{[\text{B}][\text{H}_3\text{O}^+]}{[\text{BH}^+]}
\]

\[
K_a = \frac{[\text{B}][\text{H}_3\text{O}^+][\text{OH}^-]}{[\text{BH}^+][\text{OH}^-]}
\]

\[
\text{B} + \text{H}_2\text{O} \rightleftharpoons \text{BH}^+ + \text{OH}^-
\]

\[
K_b = \frac{[\text{BH}^+][\text{OH}^-]}{[\text{B}]}
\]

\[
\frac{[\text{B}][\text{H}_3\text{O}^+]}{[\text{BH}^+]^2} = \frac{K_w}{K_b} = K_a
\]

\[
K_a = \frac{K_w}{K_b} = \frac{1.0 \times 10^{-14}}{1.75 \times 10^{-5}} = 5.7 \times 10^{-10}
\]
\[C_{BH^+} = C_{BHA} - C_B = C_{\text{salt}} - x \]

\[BH^+ + H_2O \rightleftharpoons B + H_3O^+ \]

\[C_{\text{salt}} - x \quad x \quad x \]

\[K_a = \frac{x^2}{C_{\text{salt}} - x} \approx \frac{x^2}{C_{\text{salt}}} = \frac{[H_3O^+][H_3O^+]}{C_{\text{salt}}} = \frac{[H^+][H^+]}{C_{\text{salt}}} \]

\[K_a = \frac{[H^+][H^+]}{C_{\text{salt}}} = \frac{[H^2]}{K_w} = \frac{K_w}{K_b} \]

\[[H^+] = \sqrt{\frac{K_w}{K_b}} \cdot C_{\text{salt}} \]

\[C_{\text{salt}} = C_{BH^+} \]
pH for NH₄Cl

\[\text{NH}_4\text{Cl} \rightarrow \text{NH}_4^+ + \text{Cl}^- \quad \text{(ionization)} \]

\[\text{NH}_4^+ + \text{H}_2\text{O} \rightleftharpoons \text{NH}_4\text{OH} + \text{H}^+ \quad \text{(hydrolysis)} \]

\[(\text{NH}_4^+ + \text{H}_2\text{O} \rightleftharpoons \text{NH}_3 + \text{H}_3\text{O}^+) \]

\[
\frac{[\text{NH}_4\text{OH}][\text{H}^+]}{[\text{NH}_4^+]} = K_a = \frac{K_w}{K_b} = \frac{1.0 \times 10^{-14}}{1.75 \times 10^{-5}} = 5.7 \times 10^{-10}
\]
Buffers (Buffer solutions)

• A buffer is a solution that resists change in pH when a small amount of an acid or base is added or when the solution is diluted.

• A buffer solution consists of a mixture of a weak acid and its conjugate base or a weak base and its conjugate acid at predetermined concentrations or ratios.

• That is, we have a mixture of a weak acid and its salt or a weak base and its salt.
pH of the acetate Buffer

\[\text{HOAc} \rightleftharpoons H^+ + \text{OAc}^- \]

\[[H^+] = K_a \frac{[\text{HOAc}]}{[\text{OAc}^-]} \]

\[-\log[H^+] = -\log K_a - \log \frac{[\text{HOAc}]}{[\text{OAc}^-]} \]

\[\text{pH} = pK_a - \log \frac{[\text{HOAc}]}{[\text{OAc}^-]} \]

\[\text{pH} = pK_a + \log \frac{[\text{OAc}^-]}{[\text{HOAc}]} \]
pH of a buffer of weak acid solution containing its salt

Henderson-Hasselbalch equation

\[\text{HA} \rightleftharpoons \text{H}^+ + \text{A}^- \]

\[
pH = pK_a + \log \frac{[\text{A}^-]}{[\text{HA}]}
\]

\[
pH = pK_a + \log \frac{[\text{conjugate base}]}{[\text{acid}]}
\]

\[
pH = pK_a + \log \frac{[\text{proton acceptor}]}{[\text{proton donor}]}
\]

\[
pH = pK_a + \log \frac{[\text{Salt}]}{[\text{Acid}]}
\]
Example

Calculate the pH of a buffer prepared by adding 10 mL of 0.10 M acetic acid to 20 mL of 0.10 M sodium acetate.

$$pH = pK_a + \log \frac{[\text{proton acceptor}]}{[\text{proton donor}]}$$

$$pH = pK_a + \log \frac{[\text{Salt}]}{[\text{Acid}]}$$
Example

Calculate the pH of a solution prepared by adding 25 mL of 0.10 M sodium hydroxide to 30 mL of 0.20 M acetic acid.

\[
\text{HOAc} + \text{NaOH} \rightleftharpoons \text{NaOAc} + \text{H}_2\text{O}
\]

\[
pH = pK_a + \log \frac{[\text{Salt}]_{\text{formed}}}{[\text{Acid}]_{\text{left}}}
\]

\[
pH = pK_a + \log \frac{[\text{Salt}]_{\text{formed}}}{[\text{Acid}]_{\text{left}}}
\]
Buffering mechanism

\[
pH = \text{constant} + \log \frac{[A^-]}{[HA]}
\]

\[\text{HA} \rightleftharpoons \text{H}^+ + \text{A}^-
\]

- If the solution is diluted, the ratio remains constant, and so the pH of the solution does not change.
- If a small amount of a strong acid is added, it will combine with an equal amount of the \(A^- \) to convert it to HA.
- The change in the ratio \([A^-]/[HA]\) is small and hence the change in pH is small.
- If a small amount of a strong base is added, it will combine with part of the HA to form an equivalent amount of \(A^- \).
- Again, the change in the ratio is small.
Buffering capacity

\[\text{pH} = \text{constant} + \log \frac{[A^-]}{[HA]} \]

- The amount of acid or base that can be added without causing a large change in pH is governed by the **Buffering capacity**.
- **Buffering capacity** is determined by the concentrations of \([HA]\) and \([A^-]\).
 - The higher their concentrations, the more acid or base the solution can tolerate.
- The buffer capacity (buffer intensity, buffer index) of a solution is defined as

\[\beta = \frac{dC_{\text{BOH}}}{dpH} = -\frac{dC_{\text{HA}}}{dpH} \]
Buffering capacity

• The buffer capacity is a positive number.
• The larger it is, the more resistant the solution is to pH change.
• The buffering capacity is governed by the ratio of HA to A⁻.
• The buffer is maximum when the ratio is unity.

That is, when the pH = pKₐ
Example

- A buffer solution is 0.20 \(M \) in acetic acid and in sodium acetate. Calculate the change in pH upon adding 1.0 mL of 0.10 \(M \) hydrochloric acid to 10 mL of this solution.

\[
pH = pK_a + \log \frac{[A^-]}{[HA]}
\]

\[pK_a = 4.76\]
pH of a buffer of a weak base solution containing its salt

- A mixture of a weak base and its salt acts as a buffer in the same manner as a weak acid and its salt.

Consider an equilibrium between a base and its conjugate acid BH⁺ (same as before). Then write a K_a expression for the conjugate (Bronsted) acid.

\[
BH^+ = B + H^+
\]

\[
K_a = \frac{[B][H^+]}{[BH^+]} = \frac{K_w}{K_b}
\]

\[
[H^+] = K_a \cdot \frac{[BH^+]}{[B]} = \frac{K_w}{K_b} \cdot \frac{[BH^+]}{[B]}
\]

\[
-\log[H^+] = -\log K_a - \log \frac{[BH^+]}{[B]} = -\log \frac{K_w}{K_b} - \log \frac{[BH^+]}{[B]}
\]
pH of a weak base solution containing its salt

\[\text{pH} = pK_a + \log \frac{[B]}{[BH^+]} = (pK_w - pK_b) + \log \frac{[B]}{[BH^+]} \]

Since \(\text{pH} = pK_w - \text{pOH} \)

\[\text{pOH} = pK_b + \log \frac{[BH^+]}{[B]} = pK_b + \log \frac{[\text{proton donor}]}{[\text{proton acceptor}]} \]
Buffering mechanism for a buffer of weak base solution and its salt

- When a strong acid is added, it combines with some of the base B to form the salt BH^+.
- Conversely, when a strong base is added, it combines with BH^+ to form B.
- Since the change in the ratio will be small, the change in pH will be small.
- Again, the buffering capacity is maximum when $pH = pK_a$; that is $pH = 14 - pK_b$ or $pOH = pK_b$.

\[BH^+ = B + H^+ \]

\[pH = pK_a + \log \frac{[B]}{[BH^+]} \]
Example

Calculate the volume of concentrated ammonia and the weight of ammonium chloride you would have to take to prepare 100 mL of a buffer at pH 10.00 if the final concentration of salt is to be 0.200 M. Given that the molarity of concentrated ammonia is 14.8 M.

\[
\text{pH} = pK_a + \log \frac{[\text{proton acceptor}]}{[\text{proton donor}]}
\]

\[
= (14.00 - pK_b) + \log \frac{[\text{NH}_3]}{[\text{NH}_4^+]} + \log \frac{[\text{NH}_3]}{0.200 \text{ mol/L}}
\]

\[
10.0 = (14.00 - 4.76) + \log \frac{[\text{NH}_3]}{0.200 \text{ mol/L}}
\]

\[
[NH_3] = 1.16 \text{ M}
\]

The molarity of concentrated ammonia is 14.8 M. Therefore,

\[
100 \text{ mL} \times 1.16 \text{ mmol/mL} = 14.8 \text{ mmol/mL} \times \text{mL NH}_3
\]

\[
\text{mL NH}_3 = 7.8 \text{ mL}
\]
Example

How many grams ammonium chloride and how many milliliters 3.0\textit{M} sodium hydroxide should be added to 200 mL water and diluted to 500 mL to prepare a buffer of pH 9.50 with a salt concentration of 0.10 \textit{M}?

\[
\text{NH}_4\text{Cl} \quad + \quad \text{NaOH} \quad \rightarrow \quad \text{NH}_3 \quad + \quad \text{NaCl} \quad + \quad \text{H}_2\text{O}
\]

Find the concentration of \(\text{NH}_3\) formed from the equation, \([\text{NH}_3]\) = 0.18 M

Total # mmoles of \(\text{NH}_4\text{Cl}\) added =

\[
\text{# mmoles of } \text{NH}_4\text{Cl left}_{(\text{final})} + \text{# mmoles of } \text{NH}_3 \text{ formed}_{(\text{final})}
\]

Total # mg \(\text{NH}_4\text{Cl}\) added = Total # mmoles \(\text{NH}_4\text{Cl}\) x MM (\(\text{NH}_4\text{Cl}\))

Volume of NaOH added = # mmoles of NaOH added /M (NaOH)

= # mmoles of \(\text{NH}_3\) formed/M (NaOH)
Polyprotic acids and their salts

- Polyfunctionaly acids or bases are substances that have more than one ionizable proton or hydroxide ion.
- These substances ionize stepwise, and an equilibrium constant can be written for each step.

\[
\begin{align*}
H_3PO_4 & \rightleftharpoons H^+ + H_2PO_4^- & K_{a1} = 1.1 \times 10^{-2} = \frac{[H^+][H_2PO_4^-]}{[H_3PO_4]} \\
H_2PO_4^- & \rightleftharpoons H^+ + HPO_4^{2-} & K_{a2} = 7.5 \times 10^{-8} = \frac{[H^+][HPO_4^{2-}]}{[H_2PO_4^-]} \\
HPO_4^{2-} & \rightleftharpoons H^+ + PO_4^{3-} & K_{a3} = 4.8 \times 10^{-13} = \frac{[H^+][PO_4^{3-}]}{[HPO_4^{2-}]}
\end{align*}
\]

The stepwise K_a values of polyprotic acids get progressively smaller as the increased negative charge makes dissociation of the next proton difficult.
Polyprotic acids and their salts

• The overall ionization is the sum of these individual steps and the overall ionization constant is the product of the individual ionization constants:

\[H_3PO_4 \rightleftharpoons 3H^+ + PO_4^{3-} \]

\[K_a = K_{a1}K_{a2}K_{a3} = 4.0 \times 10^{-22} = \frac{[H^+][PO_4^{3-}]}{[H_3PO_4]} \]

• In order to make precise pH calculations, the contributions of protons from each ionization step must be taken into account.
• Exact calculation is difficult and requires a tedious iterative procedure
Buffer calculations for polyprotic acids

• The anion on the right side in each ionization step can be considered the salt (conjugate base) of the acid from which it is derived.

• That is, in, $H_2PO_4^-$ is the salt of the acid H_3PO_4

 $H_3PO_4 \rightleftharpoons H^+ + H_2PO_4^-$

• HPO_4^{2-} is the salt of the acid $H_2PO_4^-$

 $H_2PO_4^- \rightleftharpoons H^+ + HPO_4^{2-}$

• PO_4^{3-} is the salt of the acid HPO_4^{2-}

 $HPO_4^{2-} \rightleftharpoons H^+ + PO_4^{3-}$

So each of these pairs constitutes a buffer system.
Buffers of orthophosphoric acid

• Orthophosphate buffers can be prepared over a wide pH range.
• The optimum buffering capacity of each pair occurs at a pH corresponding to its pK_a.
• The $\text{HPO}_4^{2-} / \text{H}_2\text{PO}_4^-$ couple is an effective buffer system in the blood.
Example

• The pH of blood is 7.40. What is the ratio of $[\text{HPO}_4^{2-}] / [\text{H}_2\text{PO}_4^{-}]$ in the blood (assume/ 25°C)?

\[
\text{pH} = \text{p}K_a + \log \frac{[\text{proton acceptor}]}{[\text{proton donor}]}
\]

\[
\text{p}K_{a2} = 7.12
\]

\[
\text{pH} = 7.12 + \log \frac{[\text{HPO}_4^{2-}]}{[\text{H}_2\text{PO}_4^{-}]}
\]
Example

Calculate the pH of a 0.100 M H_3PO_4 solution.

- The pH of a solution of H_3PO_4 can be calculated same as any weak monoprotic acid.
- The H^+ from the first ionization step effectively suppresses the other two ionization steps, so that the H^+ contribution from them is negligible compared to the first ionization.
- The quadratic equation must be solved because K_{al} is relatively large.

$$
\text{H}_3\text{PO}_4 \approx \text{H}^+ + \text{H}_2\text{PO}_4^- \\
0.100 - x \quad x \quad x
$$

$$
\frac{(x)(x)}{0.100 - x} = 1.1 \times 10^{-2}
$$

Approximation is not acceptable
Fractions of Dissociation at a given pH: α Values

• Consider the following equilibria for H_3PO_4

\[
\text{H}_3\text{PO}_4 \rightleftharpoons \text{H}^+ + \text{H}_2\text{PO}_4^- \\
\text{H}_2\text{PO}_4^- \rightleftharpoons \text{H}^+ + \text{HPO}_4^{2-} \\
\text{HPO}_4^{2-} \rightleftharpoons \text{H}^+ + \text{PO}_4^{3-}
\]

• At any given pH, all the four phosphoric acid species will coexist in equilibrium with one another.

• By changing the pH, the equilibria shift, and the relative concentrations change.

• It is possible to derive general equations for calculating the fraction of the acid that exists in a given form, from the given hydrogen ion concentration.
Fractions of Dissociation at a given pH: α Values

- For a given total analytical concentration of phosphoric acid, $C_{H_3PO_4}$ we can write

$$C_{H_3PO_4} = [PO_4^{3-}] + [HPO_4^{2-}] + [H_2PO_4^-] + [H_3PO_4]$$

$$\alpha_0 = \frac{[H_3PO_4]}{C_{H_3PO_4}} \quad \alpha_1 = \frac{[H_2PO_4^-]}{C_{H_3PO_4}} \quad \alpha_2 = \frac{[HPO_4^{2-}]}{C_{H_3PO_4}}$$

$$\alpha_3 = \frac{[PO_4^{3-}]}{C_{H_3PO_4}} \quad \alpha_0 + \alpha_1 + \alpha_2 + \alpha_3 = 1$$

- The α's are the fractions of each species present at equilibrium.
- Note that the subscripts denote the number of dissociated protons or the charge on the species.
Fractions of Dissociation at a given pH: α Values

\[\begin{align*}
H_3PO_4 & \rightleftharpoons H^+ + H_2PO_4^- \\
H_2PO_4^- & \rightleftharpoons H^+ + HPO_4^{2-} \\
HPO_4^{2-} & \rightleftharpoons H^+ + PO_4^{3-} \\
\end{align*} \]

\[\begin{align*}
K_a1 &= \frac{[H^+][H_2PO_4^-]}{[H_3PO_4]} \\
K_a2 &= \frac{[H^+][HPO_4^{2-}]}{[H_2PO_4^-]} \\
K_a3 &= \frac{[H^+][PO_4^{3-}]}{[HPO_4^{2-}]} \\
\end{align*} \]

\[\begin{align*}
[PO_4^{3-}] &= \frac{K_{a3}[HPO_4^{2-}]}{[H^+]} \\
[HPO_4^{2-}] &= \frac{K_{a2}[H_2PO_4^-]}{[H^+]^2} \\
[H_2PO_4^-] &= \frac{K_{a1}[H_3PO_4]}{[H^+]^3} \\
\end{align*} \]

\[\begin{align*}
C_{H_3PO_4} &= [PO_4^{3-}] + [HPO_4^{2-}] + [H_2PO_4^-] + [H_3PO_4] \\
C_{H_3PO_4} &= \frac{K_{a1}K_{a2}K_{a3}[H_3PO_4]}{[H^+]^3} + \frac{K_{a1}K_{a2}[H_3PO_4]}{[H^+]^2} + \frac{K_{a1}[H_3PO_4]}{[H^+]} + [H_3PO_4] \\
\end{align*} \]
Fractions of Dissociation at a given pH: α Values

\[C_{H_3PO_4} = \frac{K_{a1}K_{a2}K_{a3}[H_3PO_4]}{[H^+]^3} + \frac{K_{a1}K_{a2}[H_3PO_4]}{[H^+]^2} + \frac{K_{a1}[H_3PO_4]}{[H^+]} + [H_3PO_4] \]

\[C_{H_3PO_4} = [PO_4^{3-}] + [HPO_4^{2-}] + [H_2PO_4^-] + [H_3PO_4] \]

\[\alpha_0 = \frac{[H_3PO_4]}{C_{H_3PO_4}} \]

\[\frac{1}{\alpha_0} = \frac{K_{a1}K_{a2}K_{a3}}{[H^+]^3} + \frac{K_{a1}K_{a2}}{[H^+]^2} + \frac{K_{a1}}{[H^+]} + 1 \]

\[\alpha_0 = \frac{[H^+]^3}{[H^+]^3 + K_{a1}[H^+]^2 + K_{a1}K_{a2}[H^+] + K_{a1}K_{a2}K_{a3}} \]
Fractions of Dissociation at a given pH: α Values

\[
\alpha_1 = \frac{K_{a1}[H^+]^2}{[H^+]^3 + K_{a1}[H^+]^2 + K_{a1}K_{a2}[H^+] + K_{a1}K_{a2}K_{a3}}
\]

\[
\alpha_2 = \frac{K_{a1}K_{a2}[H^+]}{[H^+]^3 + K_{a1}[H^+]^2 + K_{a1}K_{a2}[H^+] + K_{a1}K_{a2}K_{a3}}
\]

\[
\alpha_3 = \frac{K_{a1}K_{a2}K_{a3}}{[H^+]^3 + K_{a1}[H^+]^2 + K_{a1}K_{a2}[H^+] + K_{a1}K_{a2}K_{a3}}
\]
Example

Calculate the equilibrium concentration of the different species in a 0.10 M phosphoric acid solution at pH 3.00 ([H$^+$] = 1.0 \times 10$^{-3}$ M).

\[
\begin{align*}
\alpha_0 &= \frac{(1.0 \times 10^{-3})^3}{(1.0 \times 10^{-3})^3 + (1.1 \times 10^{-2})(1.0 \times 10^{-3})^2 + (1.1 \times 10^{-2})(7.5 \times 10^{-8})(1.0 \times 10^{-3}) + (1.1 \times 10^{-2})(7.5 \times 10^{-8})(4.8 \times 10^{-13})} \\
&= \frac{1.0 \times 10^{-9}}{1.2 \times 10^{-8}} = 8.3 \times 10^{-2}
\end{align*}
\]

[H$_3$PO$_4$] = $C_{H_3PO_4} \alpha_0 = 0.10 \times 8.3 \times 10^{-2} = 8.3 \times 10^{-3}$ M

\[
\alpha_1 = 0.92
\]

[H$_2$PO$_4^-$] = $C_{H_3PO_4} \alpha_1 = 0.10 \times 0.92 = 9.2 \times 10^{-2}$ M

\[
\alpha_2 = 6.9 \times 10^{-5}
\]

[HPO$_4^{2-}$] = $C_{H_3PO_4} \alpha_2 = 0.10 \times 6.9 \times 10^{-5} = 6.9 \times 10^{-6}$ M

\[
\alpha_3 = 3.3 \times 10^{-14}
\]

[PO$_4^{3-}$] = $C_{H_3PO_4} \alpha_3 = 0.10 \times 3.3 \times 10^{-14} = 3.3 \times 10^{-15}$ M

We see that at pH 3, the majority (91%) of the phosphoric acid exists as H$_2$PO$_4^-$ and 8.3% exists as H$_3$PO$_4$. Only 3.3 \times 10$^{-12}$% exists as PO$_4^{3-}$!
Salts of polyprotic acids

- Salts of acids such as H_3PO_4 may be acidic or basic.

- The protonated salts pose both acidic and basic properties (H_2PO_4^-, HPO_4^-)

- The unprotonated salt is simply a Brensted base that hydrolyzes (PO_4^{3-}).

Amphoteric Salts.

- H_2PO_4^- possesses both acidic and basic properties.

- That is, it is amphoteric. It ionizes as a weak acid and it also is a Brensted base that hydrolyzes:

$$H_2\text{PO}_4^- \rightleftharpoons H^+ + \text{HPO}_4^{2-}$$

\[K_{a2} = \frac{[H^+][\text{HPO}_4^{2-}]}{[H_2\text{PO}_4^-]} = 7.5 \times 10^{-8} \]

\[K_b = \frac{K_w}{K_{a1}} = \frac{[\text{H}_3\text{PO}_4][\text{OH}^-]}{[\text{H}_2\text{PO}_4^-]} = \frac{1.00 \times 10^{-14}}{1.1 \times 10^{-2}} = 9.1 \times 10^{-13} \]

$$H_2\text{PO}_4^- + \text{H}^+ \rightleftharpoons \text{H}_3\text{PO}_4$$
Salts of polyprotic acids

• The solution of $\text{H}_2\text{P}0_4^-$ could be either alkaline or acidic, depending on which ionization is more extensive.

• Since K_{a2} for the first ionization is nearly 10^5 greater than K_b for the second ionization, the solution in this case will obviously be acidic.
[H\(^+\)] in a solution of amphoteric salts, H\(_2\)PO\(_4\)\(^-\)

\[
\text{H}_2\text{PO}_4^- \rightleftharpoons \text{H}^+ + \text{HPO}_4^{2-}
\]

\[
\text{H}_2\text{PO}_4^- + \text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{PO}_4 + \text{OH}^-
\]

\[
\text{H}_2\text{PO}_4^- + \text{H}^+ \rightleftharpoons \text{H}_3\text{PO}_4
\]

\[
C_{\text{H}^+} = [\text{H}^+]_{\text{total}} = [\text{H}^+]_{\text{H}_2\text{O}} + [\text{H}^+]_{\text{H}_2\text{PO}_4^-} - [\text{OH}^-]_{\text{H}_2\text{PO}_4^-}
\]

OR

\[
[\text{H}^+] = [\text{OH}^-] + [\text{HPO}_4^{2-}] - [\text{H}_3\text{PO}_4]
\]

- [OH\(^-\)] will be counted only if pH is around 7.
- In the case of acidic solution [H\(^+\)] is negligible therefore no need to include [OH\(^-\)]
In the above equation substitute values from equilibrium constants in the right hand side of the equation.

\[
[H^+] = \frac{K_w}{[H^+]} + \frac{K_{a2}[H_2PO_4^-]}{[H^+]} - \frac{[H_2PO_4^-][H^+]}{K_{a1}}
\]

Multiplying each side of the equation by \([H^+]\), collecting the terms containing \([H^+]\) on the left side, and solving for \([H^+]^2\)

\[
[H^+]^2 = \frac{K_w + K_{a2}[H_2PO_4^-]}{1 + \frac{[H_2PO_4^-]}{K_{a1}}}
\]
If the dissociation of H_2O is neglected, the $K_{a1}K_w$ will be very small and can be removed from the numerator of the equation above.

In most cases $[HA^-] \gg K_{a1}$; thus K_{a1} can be neglected from the denominator.
Consequently, \([H^+]\) for a solution of \(\text{NaH}_2\text{PO}_4\) (\(\text{H}_2\text{PO}_4^-\))

This equation is valid on the basis that the stepwise dissociation constants differ by factors of 100 or more

\[
[H^+] \approx \sqrt{K_{a1}K_{a2}} = \sqrt{1.1 \times 10^{-2} \times 7.5 \times 10^{-8}} = 2.9 \times 10^{-5} \text{ M}
\]

- \((\text{pH} = 4.54)\) thus, pH is approximately independent of the salt concentration
- This would be the approximate pH of a \(\text{NaH}_2\text{PO}_4\) solution.

- Similarly, \(\text{HPO}_4^{2-}\) (\(\text{Na}_2\text{HPO}_4\)) is both an acid and a base.
- The \(K\) values involved here are \(K_{a2}\) and \(K_{a3}\) of \(\text{H}_3\text{PO}_4\)
- Again, stepwise dissociation constants differ by factors of 100 or more

\[
[H^+] \approx \sqrt{K_{a2}K_{a3}} = \sqrt{7.5 \times 10^{-8} \times 4.8 \times 10^{-13}} = 1.9 \times 10^{-10}
\]

- pH of a \(\text{Na}_2\text{HPO}_4\) solution is 9.72
Unprotonated Salt

• Unprotonated phosphate \(\text{Na}_3\text{PO}_4, (\text{PO}_4^{3-}) \) is a fairly strong Brensted base in solution and ionizes as follows:

\[
\text{PO}_4^{3-} + \text{H}_2\text{O} \rightleftharpoons \text{HPO}_4^{2-} + \text{OH}^-
\]

\[
K_b = \frac{K_w}{K_{a3}}
\]

• The constant \(K_{a3} \) is very small, and so the equilibrium lies significantly to the right.

• Because \(K_{a3} \ll K_{a2} \), hydrolysis of \(\text{HPO}_4^- \) is suppressed by the \(\text{OH}^- \) from the first step.

• Thus, pH of \(\text{PO}_4^{3-} \) can be calculated just as for a salt of a monoprotic weak acid

• Because \(K_b \) is relatively large, the quadratic equation must be solved, that is, \(\text{PO}_4^{3-} \) is quite a strong base.
Example

- Calculate the pH of 0.100 M Na₃PO₄.

\[
\begin{align*}
\text{PO}_4^{3-} + \text{H}_2\text{O} & \rightleftharpoons \text{HPO}_4^{2-} + \text{OH}^- \\
0.100 - x & \quad x \quad x \\
[\text{HPO}_4^{2-}][\text{OH}^-] & = K_b = \frac{K_w}{K_{a3}} = \frac{1.0 \times 10^{-14}}{4.8 \times 10^{-13}} = 0.020 \\
\frac{(x)(x)}{0.100 - x} & = \frac{1.0 \times 10^{-14}}{4.8 \times 10^{-13}} = 0.020 \\
The \text{concentration is only five times } K_b, \text{ so the quadratic equation is used:} \\
x^2 + 0.020x - 2.0 \times 10^{-3} & = 0 \\
x & = \frac{-0.200 \pm \sqrt{(0.020)^2 - 4(-2.0 \times 10^{-3})}}{2} \\
x & = [\text{OH}^-] = 0.036 \text{ M} \\
pH & = 12.56
\end{align*}
\]
Physiological buffers

• The pH of the blood in a healthy individual remains remarkably constant at 7.35 to 7.4
• This is because the blood contains a number of buffers that protect against pH change due to the presence of acidic or basic metabolites.
• From a physiological viewpoint, a change of ±0.3 pH unit is extreme.
• Acid metabolites are ordinarily produced in greater quantities than basic metabolites, and carbon dioxide is the principal one.
• The buffering capacity of blood for handling CO$_2$ is estimated to be distributed among various buffer systems as follows:
 – Hemoglobin and oxyhemoglobin, 62%
 – $H_2PO_4^-/HPO_4^{2-}$ 22%
 – Plasma protein, 11%
 – Bicarbonate, 5%.
Buffers for Biological and Clinical Measurements

• Many biological reactions of interest occur in the pH range of 6 to 8.
• A number, particularly specific enzyme reactions that might be used for analyses may occur in the pH range of 4 to 10 or even greater.
• The proper selection of buffers for the study of biological reactions or for use in clinical analyses can be critical in determining whether or not they influence the reaction.
• A buffer must have the correct pK_a, near physiological pH so the ratio of $[A^-]/[HA]$ in the Henderson-Hasselbalch equation is not too far from unity, and it must be physiologically compatible.

\[
\text{pH} = 6.10 + \log \frac{[\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]}
\]
Phosphate Buffers

• Biological systems usually contain some phosphate already, and phosphate buffers will not interfere in many cases.
• By choosing appropriate mixtures of $\text{H}_3\text{PO}_4/\text{H}_2\text{PO}_4^-$, H_2PO_4^- /HPO_4^{2-}, or $\text{HPO}_4^{2-} / \text{PO}_4^{3-}$
• phosphate will precipitate or complex many polyvalent cations, and it frequently will participate in or inhibit a reaction.
• It should not be used, for example, when calcium is present if its precipitation would affect the reaction of interest.
Tris Buffers

• It is that prepared from tris(hydroxymethyl)aminomethane and its conjugate acid (the amino group is protonated).

• It is a primary standard and has good stability, has a high solubility in physiological fluids, is nonhygroscopic, does not absorb CO$_2$ appreciably, does not precipitate calcium salts, does not appear to inhibit many enzyme systems, and is compatible with biological fluids.