21.5.3. Validation Controls

validators could determine whether a user has provided information in a required field or whether a ZIP-code field contains exactly five digits. Validators provide a mechanism for validating user input on the client. When the XHTML for our page is created, the validator is converted into ECMAScript (commonly known as JavaScript) that performs the validation. However, for security reasons, validation is always performed on the server whether or not the script executes on the client.
Validating Input in a Web Form

After the user enters any data, but before the data is sent to the Web server, validators ensure that the user entered a value in each field and that the e-mail address and phone number values are in an acceptable format. In this example, (555) 123-4567, 555-123-4567 and 123-4567 are all considered valid phone numbers. Once the data is submitted, the Web server responds by displaying an appropriate message and an XHTML table repeating the submitted information. Note that a real business application would typically store the submitted data in a database or a in file on the server. We simply send the data back to the form to demonstrate that the server received the data.
Figure 21.20 presents the ASPX file. Like the Web Form in Fig. 21.16, this Web Form uses a table to organize the page's contents. Lines 24-25, 36-37 and 56-57 define TextBoxes for retrieving the user's name, e-mail address and phone number, respectively, and line 75 defines a Submit button. Lines 77-79 create a Label named outputLabel that displays the response from the server when the user successfully submits the form. Notice that outputLabel's Visible property is initially set to False, so the Label does not appear in the client's browser when the page loads for the first time.
Figure 21.20. Validators used in a Web Form that retrieves user's contact information.

	 1 <%-- Fig. 21.20: Validation.aspx --%>
 2 <%-- Form that demonstrates using validators to validate user input. --%>
 3 <%@ Page Language="C#" AutoEventWireup="true"
 4 CodeFile="Validation.aspx.cs" Inherits="Validation" %>
 5
 6 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 7 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
 8
 9 <html xmlns="http://www.w3.org/1999/xhtml" >
10 <head runat="server">
11 <title>Demonstrating Validation Controls</title>
12 </head>
13 <body>
14 <form id="form1" runat="server">
15 <div>
16 Please fill out the following form.

17 All fields are required and must

18 contain valid information.

19

20 <table>
21 <tr>
22 <td style="width: 100px" valign="top">Name:</td>
23 <td style="width: 450px" valign="top">
24 <asp:TextBox ID="nameTextBox" runat="server">
25 </asp:TextBox>

26 <asp:RequiredFieldValidator ID="nameInputValidator"
27 runat="server" ControlToValidate="nameTextBox"
28 ErrorMessage="Please enter your name."
29 Display="Dynamic"></asp:RequiredFieldValidator>
30 </td>
31 </tr>
32 <tr>
33 <td style="width: 100px" valign="top">
34 E-mail address:</td>
35 <td style="width: 450px" valign="top">
36 <asp:TextBox ID="emailTextBox" runat="server">
37 </asp:TextBox>
38 e.g., user@domain.com

39 <asp:RequiredFieldValidator ID="emailInputValidator"
40 runat="server" ControlToValidate="emailTextBox"
41 ErrorMessage="Please enter your e-mail address."
42 Display="Dynamic"></asp:RequiredFieldValidator>
43 <asp:RegularExpressionValidator
44 ID="emailFormatValidator" runat="server"
45 ControlToValidate="emailTextBox"
46 ErrorMessage="Please enter an e-mail address in a
47 valid format." Display="Dynamic"
48 ValidationExpression=
49 "\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">
50 </asp:RegularExpressionValidator>
51 </td>
52 </tr>
53 <tr>
54 <td style="width: 100px" valign="top">Phone number:</td>
55 <td style="width: 450px" valign="top">
56 <asp:TextBox ID="phoneTextBox" runat="server">
57 </asp:TextBox>
58 e.g., (555) 555-1234

59 <asp:RequiredFieldValidator ID="phoneInputValidator"
60 runat="server" ControlToValidate="phoneTextBox"
61 ErrorMessage="Please enter your phone number."
62 Display="Dynamic"></asp:RequiredFieldValidator>
63 <asp:RegularExpressionValidator
64 ID="phoneFormatValidator" runat="server"
65 ControlToValidate="phoneTextBox"
66 ErrorMessage="Please enter a phone number in a
67 valid format." Display="Dynamic"
68 ValidationExpression=
69 "((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}">
70 </asp:RegularExpressionValidator>
71 </td>
72 </tr>
73 </table>
74

75 <asp:Button ID="submitButton" runat="server" Text="Submit" />
76

77 <asp:Label ID="outputLabel" runat="server"
78 Text="Thank you for your submission."
79 Visible="False"></asp:Label>
80 </div>
81 </form>
82 </body>
83 </html>
[image: image1.jpg]3 Demonstrating Validation Controls - Microsoft Internet Explorer

Fle Edt Vew Favortes Toos Heb

Ot - OB E G| Pseach Hrrmos @G- B @

Adress |) htp:/focahostVaidation Valdation.aspx

Please fill out the following form
All felds are requived and must contain valid information.

Name [

E-mail address: | | e, user@domain com

Phonemmber: [| eg, (555 555-1234

[image: image2.jpg]CEX

| P Edt Vew Favories T Heb [
Qi - O @R G Psewcr erwvors @B~ % BB 7
e — Be

3 Demonstrating Valdation Controls - Microsoit Internet Explorer

Address

>

Please il out the following form.
Al fields are required and must contain valid information.

Name: ‘
Please enter your name.

Emaladdess| | eg, uwer@omaincom
Please enter your e-mail address.

Phone number: | eg. (555) 555-1234.
Please enter your phone aumber.

[image: image3.jpg]3 Demonstrating Validation Controls - Microsoft Internet Explorer

Fle Et Vew Fowrtes Toos Heb 3
Qo - © - R @] Pserch Frrwvos @2~ B @W-D R
P [[——

Please il out the following form.
Al fields are reguired and must contain valid information.

Name: [Bob White
E-mail address: [ouhite e.8. user@domain.com

Please enter an e-mail address in a valid format.

Phone mumber: [55-1234 eg.(555)555-1234

Please eater a phone mumber in a valid format

[image: image4.jpg]3 Demonstrating Validation Controls - Microsoft Internet Explorer
Fle Edt View Favorites Tools Help
Oms - O Q@ G| Psawch Frrmoes @
B o =

Please fill out the followiag form.
Al felds are required and must contain valid information.

Name: [Bob White
E-mail address: [bwhite@email com e.g., user@domain com
Phone number: [(555) 555-1234 eg. (555) 555-1234

‘Thank you for your submission.
‘We received the following information:
Name Bob White

E-mail address: bwhite @email com
Phone mumber: (555) 555-1234

[€] oone

Using RequiredFieldValidator Controls

In this example, we use three RequiredFieldValidator controls to ensure that the name, e-mail address and phone number TextBoxes are not empty when the form is submitted. A RequiredFieldValidator makes an input control a required field. If such a field is empty, validation fails. For example, lines 26-29 define RequiredFieldValidator nameInputValidator, which confirms that nameTextBox is not empty. Line 27 associates nameTextBox with nameInputValidator by setting the validator's ControlToValidate property to nameTextBox. This indicates that nameInputValidator verifies the nameTextBox's contents.

Property ErrorMessage's text (line 28) is displayed on the Web Form if the validation fails. If the user does not input any data in nameTextBox and attempts to submit the form, the ErrorMessage text is displayed in red. Because we set the control's Display property to Dynamic (line 29), the validator takes up space on the Web Form only when validation fails space is allocated dynamically when validation fails, causing the controls below the validator to shift downward to accommodate the ErrorMessage.
Using RegularExpressionValidator Controls

This example also uses RegularExpressionValidator controls to match the e-mail address and phone number entered by the user against regular expressions. These controls determine whether the e-mail address and phone number were each entered in a valid format. For example, lines 43-50 create a RegularExpressionValidator named emailFormatValidator. Line 45 sets property ControlToValidate to emailTextBox to indicate that emailFormatValidator verifies the emailTextBox's contents.
A RegularExpressionValidator's ValidationExpression property specifies the regular expression that validates the ControlToValidate's contents. Clicking the ellipsis next to property ValidationExpression in the Properties window displays the Regular Expression Editor dialog, which contains a list of Standard expressions for phone numbers, ZIP codes and other formatted information. You can also write your own custom expression.
For example, bob.white@email.com, bobwhite@my-email.com and bob's-personal.email@white.email.com are all valid e-mail addresses. If the user enters text in the emailTextBox that does not have the correct format and either clicks in a different text box or attempts to submit the form, the ErrorMessage text is displayed in red.
We also use RegularExpressionValidator phoneFormatValidator (lines 63-70) to ensure that the phoneTextBox contains a valid phone number before the form is submitted. In the Regular Expression Editor dialog, we select U.S. phone number to the ValidationExpression property.
If all five validators are successful (i.e., each TextBox is filled in, and the e-mail address and phone number provided are valid), clicking the Submit button sends the form's data to the server. the server then responds by displaying the submitted data in the outputLabel (lines 77-79).
Examining the Code-Behind File for a Web Form That Receives User Input

Figure 21.21. Code-behind file for a Web Form that obtains a user's contact information.

	 1 // Fig. 21.21: Validation.aspx.cs
 2 // Code-behind file for the form demonstrating validation controls.
 3 using System;

 4 using System.Data;

 5 using System.Configuration;

 6 using System.Web;

 7 using System.Web.Security;

 8 using System.Web.UI;

 9 using System.Web.UI.WebControls;

10 using System.Web.UI.WebControls.WebParts;

11 using System.Web.UI.HtmlControls;

12
13 public partial class Validation : System.Web.UI.Page

14 {

15 // Page_Load event handler executes when the page is loaded
16 protected void Page_Load(object sender, EventArgs e)

17 {

18 // if this is not the first time the page is loading
19 // (i.e., the user has already submitted form data)
20 if (IsPostBack)

21 {

22 // retrieve the values submitted by the user
23 string name = Request.Form["nameTextBox"];

24 string email = Request.Form["emailTextBox"];

25 string phone = Request.Form["phoneTextBox"];

26
27 // create a table indicating the submitted values
28 outputLabel.Text +=

29 "
We received the following information:" +

30 "<table style=\"background-color: yellow\">" +

31 "<tr><td>Name: </td><td>" + name + "</td></tr>" +

32 "<tr><td>E-mail address: </td><td>" + email + "</td></tr>" +

33 "<tr><td>Phone number: </td><td>" + phone + "</td></tr>" +

34 "<table>";

35
36 outputLabel.Visible = true; // display the output message
37 } // end if
38 } // end method Page_Load
39 } // end class Validation

Web programmers using ASP.NET often design their Web pages so that the current page reloads when the user submits the form; this enables the program to receive input, process it as necessary and display the results in the same page when it is loaded the second time. These pages usually contain a form that when submitted, sends the values of all the controls to the server and causes the current page to be requested again. This event is known as a postback. Line 20 uses the IsPostBack property of class Page to determine whether the page is being loaded due to a postback. The first time that the Web page is requested, IsPostBack is false, and the page displays only the form for user input. When the postback occurs (from the user clicking Submit), IsPostBack is true.

Lines 2325 use the Request object to retrieve the values of nameTextBox, emailTextBox and phoneTextBox from the NameValueCollection Form. When data is posted to the Web server, the XHTML form's data is accessible to the Web application through the Request object's Form array. Lines 2834 append to outputLabel's Text a line break, an additional message and an XHTML table containing the submitted data so the user knows that the server received the data correctly. In a real business application, the data would be stored in a database or file at this point in the application. Line 36 sets the outputLabel's Visible property to true, so the user can see the thank you message and submitted data.
Examining the Client-Side XHTML for a Web Form with Validation

Figure 21.22 shows the XHTML and ECMAScript sent to the client browser when Validation.aspx loads after the postback. To view this code, select View > Source in Internet Explorer. Lines 25-36, lines 100-171 and lines 180-218 contain the ECMAScript that provides the implementation for the validation controls and for performing the postback. ASP.NET generates this ECMAScript. You do not need to be able to create or even understand ECMAScriptthe functionality defined for the controls in our application is converted to working ECMAScript for us.
Figure 21.22. XHTML and ECMAScript generated by ASP.NET and sent to the browser when Validation.aspx is requested.

	 1 <!-- Fig. 21.22: Validation.html -->
 2 <!-- The XHTML and ECMAScript generated for Validation.aspx -->
 3 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 4 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
 5
 6 <html xmlns="http://www.w3.org/1999/xhtml" >
 7 <head>
 8 <title>Demonstrating Validation Controls</title>
 9 </head>
10 <body>
11 <form method="post" action="Validation.aspx"
12 onsubmit="javascript:return WebForm_OnSubmit();" id="form1">
13 <div>
14 <input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
15 value="/wEPDwUJODc5MTExMzA4D2QWAgIDD2QWAgITDw8WBB4EVGV4dAWQ
16 AlRoYW5rIHlvdSBmb3IgeW91ciBzdWJtaXNzaW9uLjxiciAvPldlIHJlY2V
17 pdmVkIHRoZSBmb2xsb3dpbmcgaW5mb3JtYXRpb246PHRhYmxlIHN0eWxlPS
18 JiYWNrZ3JvdW5kLWNvbG9yOiB5ZWxsb3ciPjx0cj48dGQ+TmFtZTogPC90Z
19 D48dGQ+Qm9iPC90ZD48L3RyPjx0cj48dGQ+RS1tYWlsIGFkZHJlc3M6IDwv
20 dGQ+PHRkPmJ3aGl0ZUBlbWFpbC5jb208L3RkPjwvdHI+PHRyPjx0ZD5QaG9
21 uZSBudW1iZXI6IDwvdGQ+PHRkPig1NTUpIDU1NS0xMjM0PC90ZD48L3RyPj
22 wvdGFibGU+HgdWaXNpYmxlZ2RkZHiyTaX3DhELahxLUxCHnaZuvuMd" />
23 </div>
24
25 <script src="/Validation/WebResource.axd?d=kpdxzzpR0gHb8glw78d_
26 hfkpmf1QLBVBMoL34vcFGS41&t=632494248729409088"
27 type="text/javascript"></script>
28
29 <script type="text/javascript">
30 <!--
31 function WebForm_OnSubmit() {

32 if (ValidatorOnSubmit() == false) return false;

33 return true;

34 }

35 // -->
36 </script>
37
38 <div>
39 Please fill out the following form.

40 All fields are required and must

41 contain valid information.

42

43 <table>
44 <tr>
45 <td style="width: 100px" valign="top">Name:</td>
46 <td style="width: 450px" valign="top">
47 <input name="nameTextBox" type="text"
48 id="nameTextBox" />

49 <span id="nameInputValidator" style="color:Red;
50 display:none;">Please enter your name.
51 </td>
52 </tr>
53 <tr>
54 <td style="width: 100px" valign="top">
55 E-mail address:</td>
56 <td style="width: 450px" valign="top">
57 <input name="emailTextBox" type="text"
58 id="emailTextBox" />
59 e.g., user@domain.com

60 <span id="emailInputValidator" style="color:Red;
61 display:none;">Please enter your e-mail address.

62
63 <span id="emailFormatValidator" style="color:Red;
64 display:none;">Please enter an e-mail address in a

65 valid format.
66 </td>
67 </tr>
68 <tr>
69 <td style="width: 100px" valign="top">Phone number:</td>
70 <td style="width: 450px" valign="top">
71 <input name="phoneTextBox" type="text"
72 id="phoneTextBox" />
73 e.g., (555) 555-1234

74 <span id="phoneInputValidator" style="color:Red;
75 display:none;">Please enter your phone number.

76
77 <span id="phoneFormatValidator" style="color:Red;
78 display:none;">Please enter a phone number in a

79 valid format.
80 </td>
81 </tr>
82 </table>
83

84 <input type="submit" name="submitButton" value="Submit"
85 onclick="javascript:WebForm_DoPostBackWithOptions(
86 new WebForm_PostBackOptions("submitButton",
87 "", true, "", "",
88 false, false))" id="submitButton" />
89

90 Thank you for your submission.

91 We received the following information:

92 <table style="background-color: yellow">
93 <tr><td>Name: </td><td>Bob</td></tr>
94 <tr><td>E-mail address: </td><td>bwhite@email.com</td></tr>
95 <tr><td>Phone number: </td><td>(555) 555-1234</td></tr>
96 </table>
97
98 </div>
99
100 <script type="text/javascript">
101 <!--
102 var Page_Validators = new Array(

103 document.getElementById("nameInputValidator"),

104 document.getElementById("emailInputValidator"),

105 document.getElementById("emailFormatValidator"),

106 document.getElementById("phoneInputValidator"),

107 document.getElementById("phoneFormatValidator"));

108 // -->
109 </script>
110
111 <script type="text/javascript">
112 <!--
113 var nameInputValidator =

114 document.all ? document.all["nameInputValidator"] :

115 document.getElementById("nameInputValidator");

116 nameInputValidator.controltovalidate = "nameTextBox";

117 nameInputValidator.errormessage = "Please enter your name.";

118 nameInputValidator.display = "Dynamic";

119 nameInputValidator.evaluationfunction =

120 "RequiredFieldValidatorEvaluateIsValid";

121 nameInputValidator.initialvalue = "";

122
123 var emailInputValidator =

124 document.all ? document.all["emailInputValidator"] :

125 document.getElementById("emailFormatValidator");

126 emailInputValidator.controltovalidate = "emailTextBox";

127 emailInputValidator.errormessage =

128 "Please enter your e-mail address.";

129 emailInputValidator.display = "Dynamic";

130 emailInputValidator.evaluationfunction =

131 "RequiredFieldValidatorEvaluateIsValid";

132 emailInputValidator.initialvalue = "";

133
134 var emailFormatValidator =

135 document.all ? document.all["emailFormatValidator"] :

136 document.getElementById("emailInputValidator");

137 emailFormatValidator.controltovalidate = "emailTextBox";

138 emailFormatValidator.errormessage =

139 "Please enter an e-mail address in a \r\n "+

140 " valid format.";

141 emailFormatValidator.display = "Dynamic";

142 emailFormatValidator.evaluationfunction =

143 "RegularExpressionValidatorEvaluateIsValid";

144 emailFormatValidator.validationexpression =

145 "\\w+([-+.\']\\w+)*@\\w+([-.]\\w+)*\\.\\w+([-.]\\w+)*";

146
147 var phoneInputValidator =

148 document.all ? document.all["phoneInputValidator"] :

149 document.getElementById("phoneInputValidator");

150 phoneInputValidator.controltovalidate = "phoneTextBox";

151 phoneInputValidator.errormessage =

152 "Please enter your phone number.";

153 phoneInputValidator.display = "Dynamic";

154 phoneInputValidator.evaluationfunction =

155 "RequiredFieldValidatorEvaluateIsValid";

156 phoneInputValidator.initialvalue = "";

157
158 var phoneFormatValidator =

159 document.all ? document.all["phoneFormatValidator"] :

160 document.getElementById("phoneFormatValidator");

161 phoneFormatValidator.controltovalidate = "phoneTextBox";

162 phoneFormatValidator.errormessage =

163 "Please enter a phone number in a \r\n "+

164 " valid format.";

165 phoneFormatValidator.display = "Dynamic";

166 phoneFormatValidator.evaluationfunction =

167 "RegularExpressionValidatorEvaluateIsValid";

168 phoneFormatValidator.validationexpression =

169 "((\\(\\d{3}\\) ?)|(\\d{3}-))?\\d{3}-\\d{4}";

170 // -->
171 </script>
172
173 <div>
174 <input type="hidden" name="__EVENTTARGET"
175 id="__EVENTTARGET" value="" />
176 <input type="hidden" name="__EVENTARGUMENT"
177 id="__EVENTARGUMENT" value="" />
178 </div>
179
180 <script type="text/javascript">
181 <!--
182 var theForm = document.forms['form1'];

183
184 if (!theForm) {

185 theForm = document.form1;

186 }

187
188 function __doPostBack(eventTarget, eventArgument) {

189 if (!theForm.onsubmit || (theForm.onsubmit() != false)) {

190 theForm.__EVENTTARGET.value = eventTarget;

191 theForm.__EVENTARGUMENT.value = eventArgument;

192 theForm.submit();

193 }

194 }

195 // -->
196 </script>
197
198 <script src="/Validation/WebResource.axd?d=2vO6TLcUQjFB3X5GN16w
199 bg2&t=632494248729409088" type="text/javascript"></script>
200
201 <script type="text/javascript">
202 <!--
203 var Page_ValidationActive = false;

204
205 if (typeof(ValidatorOnLoad) == "function") {

206 ValidatorOnLoad();

207 }

208
209 function ValidatorOnSubmit() {

210 if (Page_ValidationActive) {

211 return ValidatorCommonOnSubmit();

212 }

213 else {

214 return true;

215 }

216 }

217 // -->
218 </script>
219 </form>
220 </body>
221 </html>

In earlier ASPX files, we explicitly set the EnableViewState attribute of each Web control to False. This attribute determines whether a Web control's value persists (i.e., is retained) when a postback occurs. By default, this attribute is true, which indicates that the control's value persists. In Fig. 21.20(d), notice that the values entered by the user still appear in the text boxes after the postback occurs. A hidden input in the XHTML document (lines 14-22 of Fig. 21.22) contains the data of the controls on this page. This element is always named __VIEWSTATE and stores the controls' data as an encoded string.
21.6. Session Tracking

Originally, critics accused the Internet and e-business of failing to provide the kind of customized service typically experienced in "brick-and-mortar" stores. To address this problem, e-businesses began to establish mechanisms by which they could personalize users' browsing experiences, tailoring content to individual users while enabling them to bypass irrelevant information. Businesses achieve this level of service by tracking each customer's movement through the Internet and combining the collected data with information provided by the consumer, including billing information, personal preferences, interests and hobbies.

Personalization

Personalization makes it possible for e-businesses to communicate effectively with their customers and also improves users' ability to locate desired products and services. Companies that provide content of particular interest to users can establish relationships with customers and build on those relationships over time. Furthermore, by targeting consumers with personal offers, recommendations, advertisements, promotions and services, e-businesses create customer loyalty. Web sites can use sophisticated technology to allow visitors to customize home pages to suit their individual needs and preferences. Similarly, online shopping sites often store personal information for customers, tailoring notifications and special offers to their interests. Such services encourage customers to visit sites more frequently and make purchases more regularly.

Privacy

A trade-off exists, however, between personalized e-business service and protection of privacy. Some consumers embrace the idea of tailored content, but others fear the possible adverse consequences if the info they provide to e-businesses is released or collected by tracking technologies. Consumers and privacy advocates ask: What if the e-business to which we give personal data sells or gives that information to another organization without our knowledge? What if we do not want our actions on the Interneta supposedly anonymous mediumto be tracked and recorded by unknown parties? What if unauthorized parties gain access to sensitive private data, such as credit-card numbers or medical history? All of these are questions that must be debated and addressed by programmers, consumers, e-businesses and lawmakers alike.

[Page 1093]
Recognizing Clients

To provide personalized services to consumers, e-businesses must be able to recognize clients when they request information from a site. As we have discussed, the request/response system on which the Web operates is facilitated by HTTP. Unfortunately, HTTP is a stateless protocolit does not support persistent connections that would enable Web servers to maintain state information regarding particular clients. This means that Web servers cannot determine whether a request comes from a particular client or whether the same or different clients generate a series of requests. To circumvent this problem, sites can provide mechanisms by which they identify individual clients. A session represents a unique client on a Web site. If the client leaves a site and then returns later, the client will still be recognized as the same user. To help the server distinguish among clients, each client must identify itself to the server. Tracking individual clients, known as session tracking, can be achieved in a number of ways. One popular technique uses cookies (Section 21.6.1); another uses ASP.NET's HttpSessionState object (Section 21.6.2). Additional sessiontracking techniques include the use of input form elements of type "hidden" and URL rewriting. Using "hidden" form elements, a Web Form can write session-tracking data into a form in the Web page that it returns to the client in response to a prior request. When the user submits the form in the new Web page, all the form data, including the "hidden" fields, is sent to the form handler on the Web server. When a Web site performs URL rewriting, the Web Form embeds session-tracking information directly in the URLs of hyperlinks that the user clicks to send subsequent requests to the Web server.

Note that our previous examples set the Web Form's EnableSessionState property to False. However, because we wish to use session tracking in the following examples, we keep this property's default settingtrue.

21.6.1. Cookies

Cookies provide Web developers with a tool for personalizing Web pages. A cookie is a piece of data stored in a small text file on the user's computer. A cookie maintains information about the client during and between browser sessions. The first time a user visits the Web site, the user's computer might receive a cookie; this cookie is then reactivated each time the user revisits that site. The collected information is intended to be an anonymous record containing data that is used to personalize the user's future visits to the site. For example, cookies in a shopping application might store unique identifiers for users. When a user adds items to an online shopping cart or performs another task resulting in a request to the Web server, the server receives a cookie containing the user's unique identifier. The server then uses the unique identifier to locate the shopping cart and perform any necessary processing.

In addition to identifying users, cookies also can indicate clients' shopping preferences. When a Web Form receives a request from a client, the Web Form can examine the cookie(s) it sent to the client during previous communications, identify the client's preferences and immediately display products of interest to the client.

Every HTTP-based interaction between a client and a server includes a header containing information either about the request (when the communication is from the client to the server) or about the response (when the communication is from the server to the client). When a Web Form receives a request, the header includes information such as the request type (e.g., Get) and any cookies that have been sent previously from the server to be stored on the client machine. When the server formulates its response, the header information contains any cookies the server wants to store on the client computer and other information, such as the MIME type of the response.

[Page 1094]
The expiration date of a cookie determines how long the cookie remains on the client's computer. If you do not set an expiration date for a cookie, the Web browser maintains the cookie for the duration of the browsing session. Otherwise, the Web browser maintains the cookie until the expiration date occurs. When the browser requests a resource from a Web server, cookies previously sent to the client by that Web server are returned to the Web server as part of the request formulated by the browser. Cookies are deleted when they expire.

Using Cookies to Provide Book Recommendations

The next Web application demonstrates the use of cookies. The example contains two pages. In the first page (Figs. 21.23

 HYPERLINK "file:///C:\\Users\\Abdalrahman\\Documents\\web%20asp.net\\0131525239\\ch21lev1sec6.html" \l "ch21fig24"
21.24), users select a favorite programming language from a group of radio buttons and submit the XHTML form to the Web server for processing. The Web server responds by creating a cookie that stores a record of the chosen language, as well as the ISBN number for a book on that topic. The server then returns an XHTML document to the browser, allowing the user either to select another favorite programming language or to view the second page in our application (Figs. 21.25 and 21.26), which lists recommended books pertaining to the programming language that the user selected previously. When the user clicks the hyperlink, the cookies previously stored on the client are read and used to form the list of book recommendations.

Figure 21.23. ASPX file that presents a list of programming languages.

	 1 <%-- Fig. 21.23: Options.aspx --%>
 2 <%-- Allows client to select programming languages and access --%>
 3 <%-- book recommendations. --%>
 4 <%@ Page Language="C#" AutoEventWireup="true"
 5 CodeFile="Options.aspx.cs" Inherits="Options" %>
 6
 7 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 8 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
 9
10 <html xmlns="http://www.w3.org/1999/xhtml" >
11 <head runat="server">
12 <title>Cookies</title>
13 </head>

[Page 1095]
14 <body>
15 <form id="form1" runat="server">
16 <div>
17 <asp:Label ID="promptLabel" runat="server" Font-Bold="True"
18 Font-Size="Large" Text="Select a programming language:">
19 </asp:Label>
20
21 <asp:RadioButtonList ID="languageList" runat="server">
22 <asp:ListItem>Visual Basic 2005</asp:ListItem>
23 <asp:ListItem>Visual C# 2005</asp:ListItem>
24 <asp:ListItem>C</asp:ListItem>
25 <asp:ListItem>C++</asp:ListItem>
26 <asp:ListItem>Java</asp:ListItem>
27 </asp:RadioButtonList>
28
29 <asp:Button ID="submitButton" runat="server" Text="Submit" />
30
31 <asp:Label ID="responseLabel" runat="server" Font-Bold="True"
32 Font-Size="Large" Text="Welcome to cookies!"
33 Visible="False"></asp:Label>
34

35
36 <asp:HyperLink ID="languageLink" runat="server"
37 Visible="False" NavigateUrl="~/Options.aspx">
38 Click here to choose another language</asp:HyperLink>
39

40
41 <asp:HyperLink ID="recommendationsLink" runat="server"
42 Visible="False" NavigateUrl="~/Recommendations.aspx">
43 Click here to get book recommendations</asp:HyperLink>
44 </div>
45 </form>
46 </body>
47 </html>
(a)

[image: image5.jpg]A Cookies - Microsoft Internet Explorer

i Fle Edt Vew Favores Tods Heb
Qe - © - @ @ G Psearn
adcress [E e

Select a programming language:
® Visual Basic 2005
O Visual C# 2005
oc
ocH
Olava

3 Loca et

[Page 1096]
(b)

[image: image6.jpg]2 Cookies - Microsoft Internet Explorer
i Fie Edt Vew Favortes Toos Heb

Qo+ O @@ G Psexch

i Address [€) http:/flocahost/Cookies/Options.aspx ¥ [EJ Go

‘Welcome to cookies! You selected
Visual Basic 2005

Click here to r_hoo?e another language

Click here to get book recommendations

G Loca et

(c)

[image: image7.jpg]A Cookies - Microsoft Internet Explorer
i Fe Edt Vew Favortes Toos Hep

Qo - O BB G Osearch

sdeess [htps focaihost/Cookies/Options.spx_ ¥| [Go.

Select a programming language:
© Visual Basic 2005
© Visual C# 2005
oc
@cH
Olava

3 Loca vt

(d)

[image: image8.jpg]2 Cookies - Microsoft Internet Explorer G=1[E]
Fe Edt Ven Fovaries Tods feb o

[Qmk - O R E G Psewn
i address [€] http: focahost/Cookies/Options.aspx ¥ [EJ 6o

‘Welcome to cookies! You selected C++

Click here to choose another language

Click here to get b(@ok recommendations

G Loca et

Figure 21.24. Code-behind file that writes a cookie to the client.
(This item is displayed on pages 1097 - 1099 in the print version)
	 1 // Fig. 21.24: Options.aspx.cs
 2 // Processes user's selection of a programming language
 3 // by displaying links and writing a cookie to the user's machine.
 4 using System;

 5 using System.Data;

 6 using System.Configuration;

 7 using System.Web;

 8 using System.Web.Security;

 9 using System.Web.UI;

10 using System.Web.UI.WebControls;

11 using System.Web.UI.WebControls.WebParts;

12 using System.Web.UI.HtmlControls;

13 public partial class Options : System.Web.UI.Page

14 {

[Page 1098]
15 // stores values to represent books as cookies
16 private System.Collections.Hashtable books =
17 new System.Collections.Hashtable();
18
19 // initializes the Hashtable of values to be stored as cookies
20 protected void Page_Init(object sender, EventArgs e)

21 {

22 books.Add("Visual Basic 2005", "0-13-186900-0");
23 books.Add("Visual C# 2005", "0-13-152523-9");
24 books.Add("C", "0-13-142644-3");
25 books.Add("C++", "0-13-185757-6");
26 books.Add("Java", "0-13-148398-6");
27 } // end method Page_Init
28
29 // if postback, hide form and display links to make additional
30 // selections or view recommendations
31 protected void Page_Load(object sender, EventArgs e)

32 {

33 if (IsPostBack)

34 {

35 // user has submitted information, so display message
36 // and appropriate hyperlinks
37 responseLabel.Visible = true;

38 languageLink.Visible = true;

39 recommendationsLink.Visible = true;

40
41 // hide other controls used to make language selection
42 promptLabel.Visible = false;

43 languageList.Visible = false;

44 submitButton.Visible = false;

45
46 // if the user made a selection, display it in responseLabel
47 if (languageList.SelectedItem != null)
48 responseLabel.Text += " You selected " +
49 languageList.SelectedItem.Text.ToString();
50 else
51 responseLabel.Text += " You did not select a language.";
52 } // end if
53 } // end method Page_Load
54
55 // write a cookie to record the user's selection
56 protected void submitButton_Click(object sender, EventArgs e)

57 {

58 // if the user made a selection
59 if (languageList.SelectedItem != null)

60 {

61 string language = languageList.SelectedItem.ToString();

62
63 // get ISBN number of book for the given language
64 string ISBN = books[language].ToString();
65
66 // create cookie using language-ISBN name-value pair
67 HttpCookie cookie = new HttpCookie(language, ISBN);

[Page 1099]
68
69 // add cookie to response to place it on the user's machine
70 Response.Cookies.Add(cookie);
71 } // end if
72 } // end method submitButton_Click
73 } // end class Options

Figure 21.25. ASPX file that displays book recommendations based on cookies.
(This item is displayed on pages 1099 - 1100 in the print version)
	 1 <%-- Fig. 21.25: Recommendations.aspx --%>
 2 <%-- Displays book recommendations using cookies. --%>
 3 <%@ Page Language="C#" AutoEventWireup="true"
 4 CodeFile="Recommendations.aspx.cs" Inherits="Recommendations" %>
 5
 6 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 7 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

[Page 1100]
 8
 9 <html xmlns="http://www.w3.org/1999/xhtml" >
10 <head runat="server">
11 <title>Book Recommendations</title>
12 </head>
13 <body>
14 <form id="form1" runat="server">
15 <div>
16 <asp:Label ID="recommendationsLabel"
17 runat="server" Text="Recommendations"
18 Font-Bold="True" Font-Size="X-Large">
19 </asp:Label>

20
21 <asp:ListBox ID="booksListBox" runat="server" Height="125px"
22 Width="450px"></asp:ListBox>

23
24 <asp:HyperLink ID="languageLink" runat="server"
25 NavigateUrl="~/Options.aspx">
26 Click here to choose another language

27 </asp:HyperLink>
28 </div>
29 </form>
30 </body>
31 </html>
[image: image9.jpg]3 Book Recommendations - Microsoft Internet Explorer
Fe Edt Vew Favortes Took Hep

Qbsck ~ O - ¥ @] P search

e L ——

Recommendations

[Visual Basic 2005 How to Program. ISBIV#: 0-13-186900-0
G+ How to Program. ISBN#: 0-13-185757-6

Click here to choose another language

Figure 21.26. Reading cookies from a client to determine book recommendations.
	 1 // Fig. 21.26: Recommendations.aspx.cs
 2 // Creates book recommendations based on cookies.
 3 using System;

 4 using System.Data;

 5 using System.Configuration;

 6 using System.Collections;

 7 using System.Web;

 8 using System.Web.Security;

 9 using System.Web.UI;

10 using System.Web.UI.WebControls;

11 using System.Web.UI.WebControls.WebParts;

12 using System.Web.UI.HtmlControls;

13
14 public partial class Recommendations : System.Web.UI.Page

15 {

16 // read cookies and populate ListBox with any book recommendations
17 protected void Page_Init(object sender, EventArgs e)

18 {

19 // retrieve client's cookies
20 HttpCookieCollection cookies = Request.Cookies;
21
22 // if there are cookies, list the appropriate books and ISBN numbers
23 if (cookies.Count != 0)

24 {

25 for (int i = 0; i < cookies.Count; i++)

26 booksListBox.Items.Add(cookies[i].Name +
27 " How to Program. ISBN#: " + cookies[i].Value);
28 } // end if
29 else
30 {

31 // if there are no cookies, then no language was chosen, so
32 // display appropriate message and clear and hide booksListBox
33 recommendationsLabel.Text = "No Recommendations";

34 booksListBox.Items.Clear();

35 booksListBox.Visible = false;

36
37 // modify languageLink because no language was selected
38 languageLink.Text = "Click here to choose a language";

39 } // end else
40 } // end method Page_Init
41 } // end class Recommendations

The ASPX file in Fig. 21.23 contains five radio buttons (lines 2127) with the values Visual Basic 2005, Visual C# 2005, C, C++, and Java. Recall that you can set the values of radio buttons via the ListItem Collection Editor, which is opened either by clicking the RadioButtonList's Items property in the Properties window or by clicking the Edit Items... link in the RadioButtonList Tasks smart tag menu. The user selects a programming language by clicking one of the radio buttons. The page contains a Submit button, which when clicked, creates a cookie containing a record of the selected language. Once created, this cookie is added to the HTTP response header, and a postback occurs. Each time the user chooses a language and clicks Submit, a cookie is written to the client.
When the postback occurs, certain controls are hidden and others are displayed. The Label, RadioButtonList and Button used to select a language are hidden. Toward the bottom of the page, a Label and two HyperLinks are displayed. One link requests this page (lines 3638), and the other requests Recommendations.aspx (lines 4143). Notice that clicking the first hyperlink (the one that requests the current page) does not cause a postback to occur. The file Options.aspx is specified in the NavigateUrl property of the hyperlink. When the hyperlink is clicked, this page is requested as a completely new request. Recall that earlier in the chapter, we set NavigateUrl to a remote Web site (http://www.deitel.com). To set this property to a page within the same ASP.NET application, click the ellipsis button next to the NavigateUrl property in the Properties window to open the Select URL dialog. Use this dialog to select a page within your project as the destination for the HyperLink.

Adding and Linking to a New Web Form

Setting the NavigateUrl property to a page in the current application requires that the destination page exist already. Thus, to set the NavigateUrl property of the second link (the one that requests the page with book recommendations) to Recommendations.aspx, you must first create this file by right clicking the project location in the Solution Explorer and selecting Add New Item... from the menu that appears. In the Add New Item dialog, select Web Form from the Templates pane and change the name of the file to Recommendations.aspx. Finally, check the box labeled Place code in separate file to indicate that the IDE should create a code-behind file for this ASPX file. Click Add to create the file. (We discuss the contents of this ASPX file and code-behind file shortly.) Once the Recommendations.aspx file exists, you can select it as the NavigateUrl value for a HyperLink in the Select URL dialog.

Writing Cookies in a Code-Behind File

Figure 21.24 presents the code-behind file for Options.aspx (Fig. 21.23). This file contains the code that writes a cookie to the client machine when the user selects a programming language. The code-behind file also modifies the appearance of the page in response to a postback.
Lines 1617 create books as a Hashtable (namespace System.Collections)a data structure that stores keyvalue pairs. A program uses the key to store and retrieve the associated value in the Hashtable. In this example, the keys are strings containing the programming languages' names, and the values are strings containing the ISBN numbers for the recommended books. Class Hashtable provides method Add, which takes as arguments a key and a value. A value that is added via method Add is placed in the Hashtable at a location determined by the key. The value for a specific Hashtable enTRy can be determined by indexing the Hashtable with that value's key. The expression

 HashtableName[keyName]

returns the value in the keyvalue pair in which keyName is the key. For example, the expression books[language] in line 64 returns the value that corresponds to the key contained in language. Class Hashtable is discussed in detail in Chapter 25, Data Structures.

Clicking the Submit button creates a cookie if a language is selected and causes a postback to occur. In the submitButton_Click event handler (lines 5672), a new cookie object (of type HttpCookie) is created to store the language and its corresponding ISBN number (line 67). This cookie is then Added to the Cookies collection sent as part of the HTTP response header (line 70). The postback causes the condition in the if statement of Page_Load (line 33) to evaluate to true, and lines 3751 execute. Lines 3739 reveal the initially hidden controls responseLabel, languageLink and recommendationsLink. Lines 4244 hide the controls used to obtain the user's language selection. Line 47 determines whether the user selected a language. If so, that language is displayed in responseLabel (lines 4849). Otherwise, text indicating that a language was not selected is displayed in responseLabel (line 51).

Displaying Book Recommendations Based on Cookie Values

After the postback of Options.aspx, the user may request a book recommendation. The book recommendation hyperlink forwards the user to Recommendations.aspx (Fig. 21.25) to display the recommendations based on the user's language selections.
Recommendations.aspx contains a Label (lines 1619), a ListBox (lines 2122) and a HyperLink (lines 2427). The Label displays the text Recommendations if the user has selected one or more languages; otherwise, it displays No Recommendations. The ListBox displays the recommendations created by the code-behind file, which is shown in Fig. 21.26. The HyperLink allows the user to return to Options.aspx to select additional languages.

Code-Behind File That Creates Book Recommendations From Cookies

In the code-behind file Recommendations.aspx.cs (Fig. 21.26), method Page_Init (lines 1740) retrieves the cookies from the client, using the Request object's Cookies property (line 20). This returns a collection of type HttpCookieCollection, containing cookies that have previously been written to the client. Cookies can be read by an application only if they were created in the domain in which the application is runninga Web server can never access cookies created outside the domain associated with that server. For example, a cookie created by a Web server in the deitel.com domain cannot be read by a Web server in any other domain.
Line 23 determines whether at least one cookie exists. Lines 2527 add the information in the cookie(s) to the booksListBox. The for statement retrieves the name and value of each cookie using i, the statement's control variable, to determine the current value in the cookie collection. The Name and Value properties of class HttpCookie, which contain the language and corresponding ISBN, respectively, are concatenated with " Howto Program. ISBN# " and added to the ListBox. Lines 3338 execute if no language was selected. We summarize some commonly used HttpCookie properties in Fig. 21.27.
	Figure 21.27. HttpCookie properties.

	Properties
	Description

	Domain
	Returns a string containing the cookie's domain (i.e., the domain of the Web server running the application that wrote the cookie). This determines which Web servers can receive the cookie. By default, cookies are sent to the Web server that originally sent the cookie to the client. Changing the Domain property causes the cookie to be returned to a Web server other than the one that originally wrote it.

	Expires
	Returns a DateTime object indicating when the browser can delete the cookie.

	Name
	Returns a string containing the cookie's name.

	Path
	Returns a string containing the path to a directory on the server (i.e., the Domain) to which the cookie applies. Cookies can be "targeted" to specific directories on the Web server. By default, a cookie is returned only to applications operating in the same directory as the application that sent the cookie or a subdirectory of that directory. Changing the Path property causes the cookie to be returned to a directory other than the one from which it was originally written.

	Secure
	Returns a bool value indicating whether the cookie should be transmitted through a secure protocol. The value true causes a secure protocol to be used.

	Value
	Returns a string containing the cookie's value.

