Philadelphia University Faculty of Science Department of Basic Sciences & Mathematics First Semester 2017 – 2018	Forr	Calculus I (250101) MA First Exam Tuesday, 14 November 2017 Time: 50 minutes.
الشّعبة : المدرّس :	الرقم :	الاسم :

<u>Part One:</u> (2.0 points each). Write the correct answer for each of the following in the table provided. Only the answers in the table will be graded.

1	2	3	4	5

- 1. The figure below shows the graph of g(x) which is obtained by **translating and/or reflecting** the graph of $f(x) = x^2$. The equation of g(x) is
 - a. $g(x) = 3 (x 2)^{2}$ b. $g(x) = 3 - (x + 2)^{2}$ c. $g(x) = 2 - (x - 3)^{2}$ d. $g(x) = 2 - (x + 3)^{2}$
- 2. If the domain of an **even** function f(x) is \mathbb{R} and f(2) = -3, then f(-2) equals a. -2 b. 3 c. -3 d. 2
- 3. The exact value of the expression $\cos^{-1}\left(\cos\frac{4\pi}{3}\right)$ is a. $\frac{5\pi}{6}$ b. $\frac{2\pi}{3}$ c. $\frac{\pi}{3}$ d. $\frac{\pi}{6}$
- 4. Which of the following statements is **true**? a. $e^x \neq 0$ for all real numbers x. b. $g \circ f = f \circ g$ in general. c. $\tan^{-1} x = \frac{\sin^{-1} x}{\cos^{-1} x}$ d. $\ln(0) = 1$

5. The graphs of the functions f(x) and g(x) are given below. The value of $(f \circ g)(0)$ equals

<u>Part Two:</u> (3 points each). Fully answer each of the following questions.

1. Find the **domain** of the function $f(x) = \ln(3-x) + \sqrt{16-x^2}$.

2. Find the **exact value** of $\sin\left(2\tan^{-1}\left(\frac{12}{5}\right)\right)$.

3. Find the **inverse function** of the one-to-one function $f(x) = \frac{x-1}{x+1}$.

4. Solve the logarithmic equation $\log_2(x-1) + \log_2(x+2) = 2$.