

Calculus (1)
0250101

Philadelphia University
Department of Basic Sciences and Mathematics
First Semester 2017/2018 Final Exam

Thursday, 25/1/2018
Time: 2 hours
Name: \qquad Student Number: \qquad Section: \qquad

Question One (2 points each): Write the symbol of the correct answer for each of the following questions. Only the answers in the table will be graded.

1	2	3	4	5	6	7	8	9	10	11	12	13	14

1) The domain of the function $f(x)=\log \left(x^{2}-5 x+6\right)$ equals
a) $(-\infty,-3) \cup(2, \infty)$
b) $(-\infty,-1) \cup(6, \infty)$
c) $(-\infty,-2) \cup(3, \infty)$
d) $(-\infty, 2) \cup(3, \infty)$
2) The exact value of $\tan \left(\sin ^{-1}\left(\frac{4}{5}\right)\right)$ equals
a) $\frac{4}{3}$
b) $\frac{3}{5}$
c) $\frac{3}{4}$
d) $\frac{4}{5}$
3) If $f(x)=\tan ^{-1}(x)$, then $f^{\prime \prime}(-3)$ equals
a) $-\frac{4}{25}$
b) $\frac{3}{50}$
c) $-\frac{3}{50}$
d) $\frac{4}{25}$
4) If $h(x)=f(g(x)), h^{\prime}(2)=12, g(2)=5$, and $f^{\prime}(5)=3$, then $g^{\prime}(2)$ equals
a) 3
b) 2
c) 1
d) 4
5) If $y=\left(x^{2}+1\right)^{\cos (3 x)}$, then $\frac{d y}{d x}$ equals
a) $\frac{2 x \cos (3 x)}{x^{2}+1}-3 \sin (3 x) \ln \left(x^{2}+1\right)$
b) $\left[\frac{2 x \sin (3 x)}{x^{2}+1}+3 \cos (3 x) \ln \left(x^{2}+1\right)\right]\left(x^{2}+1\right)^{\sin (3 x)}$
c) $\left[\frac{2 x \cos (3 x)}{x^{2}+1}-3 \sin (3 x) \ln \left(x^{2}+1\right)\right]\left(x^{2}+1\right)^{\cos (3 x)}$
d) $\frac{2 x \sin (3 x)}{x^{2}+1}+3 \cos (3 x) \ln \left(x^{2}+1\right)$
6) If $f(x)=\cos (5 x)$, then $f^{(41)}(x)$ equals
a) $-5^{41} \sin (5 x)$
b) $-5^{41} \cos (5 x)$
c) $5^{41} \sin (5 x)$
d) $5^{41} \cos (5 x)$
7) The equation of the tangent line of the curve of $x^{2}+y^{2}=20$ at the point $(x, y)=(4,-2)$ is
a) $y=2 x+10$
b) $y=-2 x-10$
c) $y=2 x-10$
d) $y=-2 x+10$
8) $\lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+5}-3}{x^{2}-4}$ equals
a) 8
b) $\frac{1}{8}$
c) 6
d) $\frac{1}{6}$
9) If $f(x)=\left\{\begin{array}{l}x^{3}+1, x \leq 1 \\ x^{4}+1, x>1\end{array}\right.$, then which of the following statements is true about $f(x)$
a) $f(x)$ is discontinuous and differentiable at $x=1$
b) $f(x)$ is continuous and differentiable at $x=1$
c) $f(x)$ is continuous and not differentiable at $x=1$
d) $f(x)$ is discontinuous and not differentiable at $x=1$
10) The function $f(x)=\ln (x-1)$ satisfies the conditions of the mean value theorem on $[2, e+1]$, then the value of c in the conclusion of the theorem is
a) $e-3$
b) e
c) $e+1$
d) $e-2$
11) $\int \frac{4 \sec ^{2} x \tan x}{1+\sec ^{2} x} d x$ equals
a) $2 \ln \left(1+\sec ^{2} x\right)+c$
b) $3 \ln \left(1+\sec ^{2} x\right)+c$
c) $4 \ln \left(1+\sec ^{2} x\right)+c$
d) $5 \ln \left(1+\sec ^{2} x\right)+c$
12) If $\int_{1}^{2} 4 f(x) d x=8$ and $\int_{2}^{5}(f(x)-4) d x=-8$, then $\int_{1}^{5} f(x) d x$ equals
a) 5
b) 6
c) 7
d) 8
13) $\int \frac{10 \sin ^{-1} x}{\sqrt{1-x^{2}}} d x$ equals
a) $3\left(\sin ^{-1} x\right)^{2}+c$
b) $2\left(\sin ^{-1} x\right)^{2}+c$
c) $4\left(\sin ^{-1} x\right)^{2}+c$
d) $5\left(\sin ^{-1} x\right)^{2}+c$
14) The area of the region enclosed by $f(x)=9 x^{2}+1, x=1, x=3$ and the x-axis equals
a) 73
b) 80
c) 58
d) 62

Question Two (8 points): If $f(x)=x^{3}-12 x, x \in[-5,5]$, find (if any):

1) Critical values.
2) Increasing and decreasing intervals.
3) Maximum and minimum values and classify them as local (relative) or absolute.
4) Intervals of concavity, up or down.
5) Inflection points.

Question Three (3 points): Find $\lim _{x \rightarrow 0^{+}}(2 x+1)^{\cot x}$.

Question Four (3 points): Find $\int_{1}^{e} \frac{1}{x\left(1+(\ln x)^{2}\right)} d x$.

