Academic Year:	$2016-2017$	Course Name:	Calculus 2.
Semester:	First Semester	Course Number:	250102
Exam:	Final Exam	Student Name:	-
Exam Date:	$28 / 01 / 2017$	University ID:	-
Exam Day:	Saturday	Section:	-
Mark:	$[40]$	Serial:	-

Question ONE : (18 points) Write the symbol of the correct answer in the blank.

1. [The equation of the conic, shown in the figure below, is

(A) $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
(B) $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
(C) $\frac{x^{2}}{16}-\frac{y^{2}}{16}=1$
(D) $\frac{y^{2}}{4}-\frac{x^{2}}{4}=1$
2. [The directrix of the parabola $(y-3)^{2}=8(x-2)$ is given by
(A) $y=0$
(B) $y=1$
(C) $x=0$
(D) $x=1$
3. \quad The equation $x^{2}+y^{2}-6 y=0$ can be expressed in polar coordinates as
(A) $r=-6 \sin \theta$
(B) $r=6 \cos \theta$
(C) $r=-6 \cos \theta$
(D) $r=6 \sin \theta$
4.] The curve given by the parametric equations $x(t)=\cos t ; y(t)=\cos t+\sin ^{2} t$ is
(A) parabola
(B) hyperbola
(C) ellipse
(D) line
5. \quad The rectangular coordinates of the point whose polar coordinates are $\left[12, \frac{\pi}{6}\right]$ equal
(A) $(4,4 \sqrt{3})$
(B) $(4 \sqrt{3}, 4)$
(C) $(6,6 \sqrt{3})$
(D) $(6 \sqrt{3}, 6)$
6. $]$ The arc length of the curve given in polar coordinates by $r(\theta)=e^{\theta}$ on $[0, \ln 3]$ equals
(A) $3 \sqrt{2}$
(B) $2 \sqrt{2}$
(C) $5 \sqrt{2}$
(D) $4 \sqrt{2}$
7. $]$ Suppose that $\sum_{n=1}^{\infty} a_{n}$ is an infinite series with partial sum $S_{n}=5-\frac{2}{n^{2}}$, then $a_{3}=$
(A) $\frac{25}{36}$
(B) $-\frac{25}{36}$
(C) $\frac{5}{18}$
(D) $-\frac{5}{18}$
8. [If $\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$ for $x \in \mathbb{R}$, then $\sum_{n=0}^{\infty}(-1)^{n} \frac{\pi^{2 n+1}}{2^{2 n}(2 n+1)!}$ converges to
(A) 2
(B) 1
(C) -1
(D) 0
9. \quad Which one of the following sequences converges ?
(A) $\left(1-\frac{4}{n}\right)^{n^{2}}$
(B) $\sin \left(\frac{\pi n}{2}\right)$
(C) $1+(-1)^{n}$
(D) $\frac{2 n+1}{1-3 \sqrt{n}}$
10. [] Given $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, then the Taylor series of $g(x)=e^{-2 x}$ about $x=1$ is
(A) $\frac{1}{e^{2}} \sum_{n=0}^{\infty}(-1)^{n} \frac{(x-2)^{n}}{n!}$
(B) $\frac{1}{e^{2}} \sum_{n=0}^{\infty} \frac{(x+2)^{n}}{n!}$
(C) $\frac{1}{e^{2}} \sum_{n=0}^{\infty}(-1)^{n} \frac{2^{n}(x-1)^{n}}{n!}$
(D) $\frac{1}{e^{2}} \sum_{n=0}^{\infty} \frac{2^{n}(x+1)^{n}}{n!}$
11. [] Given that $\int \frac{1}{(x-a)(x-b)} d x=\frac{1}{a-b} \ln \left|\frac{x-a}{x-b}\right|+C$, then the improper integral $\int_{4}^{\infty} \frac{1}{(x-2)(x-3)} d x$ converges to
(A) $\frac{1}{2} \ln 3$
(B) $\ln 2$
(C) $\ln \left(\frac{4}{3}\right)$
(D) $\ln \left(\frac{3}{2}\right)$
12. [] If $P(x)$ is a polynomial of degree 2 such that $\int x^{2} e^{x} d x=P(x) e^{x}+C$, then $P(x)=$
(A) $x^{2}-2 x+2$
(B) $(x-1)^{2}$
(C) x^{2}
(D) $x^{2}-2$

Question TWO : (6 points) Find the center, foci, and vertices for the hyperbola

$$
9 x^{2}-16 y^{2}+18 x=135
$$

\qquad

Time: 120 Minutes

Question THREE : (5 points) Determine whether the series $\sum_{n=3}^{\infty}(-1)^{n} \frac{\ln n}{n}$ is absolutely convergent, conditionally convergent, or divergent series.
\qquad

Question FOUR : (7 points) Find the interval and radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x+2)^{n}}{n^{2}}$.
\qquad

Question FIVE : (4 points) Evaluate the indefinite integral $\int \frac{1}{x^{2} \sqrt{4-x^{2}}} d x$.
\qquad

