

Philadelphia University
Department of Basic Sciences and Mathematics

Academic Year:	2017-2018	Course Name:	ODEs
Semester:	Second Semester	Course Number:	250203
Exam:	Second Exam	Instructor Name:	Feras Awad
Exam Date:	$03 / 05 / 2018$	Student Name:	-
Exam Day:	Thursday	University ID:	-
Mark:	$[20]$	Section:	$[1]$

Question ONE : (10 points) Write the symbol of the correct answer in the blank.

1. $\left[\begin{array}{r} \\ \\ L\left[x^{2}\right] \text { equals }\end{array}\right.$ Let be a differential operator defined by $L[y]:=\left(D^{2}-x D+2\right)[y]$. Then
.
(A) $2-2 x^{2}$
(B) 2
(C) $2-x^{2}$
(D) $2 x$
2. [Which one of the following is a form of the particular solution of the linear 2nd order differential equation $y^{\prime \prime}-4 y^{\prime}+4 y=x e^{2 x}$?
(A) $A x e^{2 x}$
(B) $x^{2} e^{2 x}(A x+B)$
(C) $x e^{2 x}(A x+B)$
(D) $A x^{2} e^{2 x}$
3. \quad The differential operator that annihilates the function $x e^{-2 x}+x e^{-5 x} \sin 3 x$ is
(A) $(D+2)^{2}\left[(D+5)^{2}+9\right]^{2}$
(B) $(D+2)^{2}\left[(D+3)^{2}+25\right]^{2}$
(C) $(D+2)^{2}\left[(D+3)^{2}+9\right]^{2}$
(D) $(D+2)^{2}\left[(D+5)^{2}+9\right]$
4. [Which of the following sets of functions are linearly independent on $(0, \infty)$?
(A) $\left\{1, \sin ^{2} x, \cos ^{2} x\right\}$
(B) $\{1, x+3,2 x\}$
(C) $\{x, \ln x, 3\}$
(D) None
5. [If the fundamental solutions of the equation $y^{\prime \prime}+a y^{\prime}+b y=0$ are $y_{1}=e^{2 x}$ and
(A) $a=-5, b=6$
(B) $a=5, b=6$
(C) $a=-1, b=-6$
(D) $a=1, b=-6$

Question TWO : (6 points) Solve the equation $y^{\prime \prime}+y=\sec x$ by variation of parameters.
\qquad

Question THREE : (4 points) Solve the Cauchy-Euler equation $x^{2} y^{\prime \prime}-3 x y^{\prime}-12 y=0$.
\qquad

