

Philadelphia University Department of Basic Sciences and Mathematics

Academic Year:	2017-2018	Course Name:	ODEs	
Semester:	Second Semester	Course Number:	250203	
Exam:	Second Exam	Instructor Name:	Feras Awad	
Exam Date:	03/05/2018	Student Name:		
Exam Day:	Thursday	University ID:		
Mark:	[20]	Section:	[1]	

Question ONE : (10 points) Write the symbol of the correct answer in the blank.

- 1. $\begin{bmatrix} \\ L \end{bmatrix}$ Let L be a differential operator defined by $L[y] := (D^2 xD + 2)[y]$. Then $L[x^2]$ equals
 - (A) $2 2x^2$ (B) 2 (C) $2 x^2$ (D) 2x
- 2. $\begin{bmatrix} \\ \end{bmatrix}$ Which one of the following is a form of the particular solution of the linear 2nd order differential equation $y'' 4y' + 4y = xe^{2x}$?
 - (A) Axe^{2x} (B) $x^2e^{2x}(Ax+B)$ (C) $xe^{2x}(Ax+B)$ (D) Ax^2e^{2x}

4. [] Which of the following sets of functions are linearly independent on (0,∞) ?
(A) {1, sin² x, cos² x}
(B) {1, x + 3, 2x}
(C) {x, ln x, 3}
(D) None

(A) a = -5, b = 6(B) a = 5, b = 6(C) a = -1, b = -6(D) a = 1, b = -6

Time: 60 Minutes

13:00 - 14:00

Question TWO :	(6	points) Solve the	e equation	y'' +	$y = \sec x \mathbf{k}$	by variation	of parameters.
•	•				• • •	•/	1	

Time: 60 Minutes

Question THREE : (4	points	Solve the Cauch	y-Euler eo	quation x^2y	y'' - 3xy	'-12y=0.
---------------------	--------	-----------------	------------	----------------	-----------	----------

Time: 60 Minutes