Philadelphia University
 Department of Basic Sciences and Mathematics

Final Exam
Ordinary Differential Equations

Name: \qquad Number: \qquad Serial: \qquad Section: (1)

Question ONE : (12 points) Write the symbol of the correct answer.

1. \quad Any linear $n^{\text {th }}$-order initial value problem has
(A) exactly n solutions
(B) infinitely many solutions
(C) exactly one solution
(D) None of all
2. $]$ Consider the differential equation $\left(3 x^{2}+y\right) d x+\left(x^{2} y-x\right) d y=0$. An integrating factor of the equation is
(A) $\frac{2}{x}-1$
(B) $-1-\frac{2}{x}$
(C) $1-\frac{2}{x}$
(D) $1-\frac{1}{x}$
3. \quad The Laplace transform of $f(t)=e^{2 t} \cos (\sqrt{3} t)$ is
(A) $\frac{p-2}{(p-2)^{2}+9}$
(B) $\frac{\sqrt{3}}{(p-2)^{2}+3}$
(C) $\frac{p-2}{p^{2}+3}$
(D) $\frac{p-2}{(p-2)^{2}+3}$
4. [\quad Let L be defined by $L[y]:=\left(D^{2}-x D+2\right)[y]$. Then $L\left[x^{2}\right]$ equals
(A) $2-2 x^{2}$
(B) 2
(C) $2-x^{2}$
(D) $2 x$
5. Which one of the following is a form of the particular solution of the second order differential equation $y^{\prime \prime}-4 y^{\prime}+4 y=x e^{2 x}$?
(A) $A x e^{2 x}$
(B) $x^{2} e^{2 x}(A x+B)$
(C) $x e^{2 x}(A x+B)$
(D) $A x^{2} e^{2 x}$
6. $\quad]$ The differential operator that annihilates the function $x e^{-2 x}+x e^{-5 x} \sin 3 x$ is
(A) $(D+2)^{2}\left[(D+5)^{2}+9\right]^{2}$
(B) $(D+2)^{2}\left[(D+3)^{2}+25\right]^{2}$
(C) $(D+2)^{2}\left[(D+3)^{2}+9\right]^{2}$
(D) $(D+2)^{2}\left[(D+5)^{2}+9\right]$

Question TWO : (3 points) Find the inverse Laplace transform for the function

$$
F(p)=\frac{2 p-1}{p^{2}-4 p+6}
$$

Question THREE : (4 points) Solve the nonlinear equation $y^{\prime \prime}+\left(y^{\prime}\right)^{2}+1=0$.
\qquad

Page 2

Question FOUR : (5 points) Solve the following initial value problem using the method of Laplace transforms.

$$
y^{\prime \prime}+4 y^{\prime}+4 y=t^{2} e^{t} \quad ; \quad y(0)=y^{\prime}(0)=0
$$

Question FIVE : (5 points) Solve the given system of differential equations by systematic elimination.

$$
\begin{aligned}
& \frac{d x}{d t}=2 x-y \\
& \frac{d y}{d t}=x
\end{aligned}
$$

Question SIX : (5 points) Find a power series solution $\sum_{n=0}^{\infty} c_{n} x^{n}$ of the differential equation $y^{\prime}=x y$.
\qquad

Page 5

Question SEVEN : (3 points) Solve the Cauchy-Euler equation $x^{2} y^{\prime \prime}-3 x y^{\prime}-2 y=0$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question EIGHT : (5 points) Solve the equation $y^{\prime \prime}+y=\sec x$ by variation of parameters.
\qquad

