Philadelphia University
 Department of Basic Sciences and Mathematics

Second Exam

Probability Theory

Name: \qquad Number: \qquad Serial:
Section: (1)

1. If X has the distribution function $F(x)=\left\{\begin{array}{clc}0 & : & x<0 \\ 1 / 8 & : & 0 \leq x<1 \\ 1 / 2 & : & 1 \leq x<2 \\ 7 / 8 & : & 2 \leq x<3 \\ 1 & : & x \geq 3\end{array}\right.$, find
(a) (2 points) $P(1<X \leq 3)$,
\qquad
\qquad
\qquad
(b) (2 points) the distribution of X.
\qquad
\qquad
\qquad
\qquad
\qquad
2. The p.d.f of the random variable X is given by $f(x)=\left\{\begin{array}{ccc}\frac{c}{\sqrt{x}} & : & 0<x<4 \\ 0 & : & \text { otherwise }\end{array}\right.$, find
(a) (2 points) the value of c,
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (2 points) $P(X>1)$.
\qquad
\qquad
\qquad
\qquad
3. If the values of the joint distribution of X and Y are as shown in the table.

Find:
(a) (2 points) $P(X>Y)$,
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (2 points) the conditional distribution of Y given that $X=1$.
\qquad

Page 2
4. If the joint probability distribution of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{cl}
6(1-y) & : 0 \leq x \leq y \leq 1 \\
0 & : \\
\text { otherwise }
\end{array},\right.
$$

find
(a) (4 points) $P\left(X+Y<\frac{1}{2}\right)$,
(b) (4 points) $E(X)$.
\qquad

Page 3

