Philadelphia University
 Department of Basic Sciences and Mathematics

Final Exam
Probability Theory

Name: \qquad Number: \qquad
\qquad Section: (1)

Question ONE : (10 points) Write the symbol of the correct answer.

1.]How many distinct permutations are there of the letters in the word "statistics" that begin and end with the letter " s "?
(A) $\frac{10!}{3!3!2!}$
(B) $\frac{8!}{3!2!}$
(C) $\frac{10!}{3!2!}$
(D) $\frac{8!}{3!3!2!}$
2. [If A and B are mutually exclusive, $P(A)=0.37$, and $P(B)=0.44$, find $P\left(A^{c} \cap B^{c}\right)$.
(A) 0.0
(B) 0.63
(C) 0.81
(D) 0.19
3. \quad Four candidates are seeking a vacancy on a school board. If A is twice as likely to be elected as B , and B and C are given about the same chance of being elected, while C is twice as likely to be elected as D , who will win the vacancy?
(A) Candidate D
(B) Candidate C
(C) Candidate B
(D) Candidate A
4. \quad A coin is loaded so that the probabilities of heads and tails are 0.52 and 0.48 , respectively. If the coin is tossed three times, what are the probabilities of getting all heads?
(A) 0.140608
(B) 0.110592
(C) 0.119808
(D) 0.129792
5. \quad If the joint probability distribution of X and Y is given by

$$
f(x, y)=c\left(x^{2}+y^{2}\right) \quad \text { for } \quad x=-1,0,1,3 \quad ; \quad y=-1,2,3
$$

find the value of c.
(A) 1
(B) $\frac{1}{2}$
(C) $\frac{1}{89}$
(D) $\frac{1}{100}$

Question TWO : (3 points) If X is the number of heads and Y the number of heads minus the number of tails obtained in three flips of a balanced coin, construct a table showing the values of the joint probability distribution of X and Y.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question THREE : (6 points) If the joint density of X and Y is given by

$$
f(x, y)= \begin{cases}6 e^{-3 x-2 y} & \text { for } x>0, y>0 \\ 0 & \text { elsewhere }\end{cases}
$$

find the probability density of $Z=X+Y$.
\qquad

Question FOUR : ($3+1$ points) If $E[X]=1$ and $\sigma_{X}^{2}=6$, find
(a) $E\left[(2+X)^{2}\right]$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) $\operatorname{Var}[4+3 X]$
\qquad
\qquad
Question FIVE : ($\mathbf{2}+\mathbf{3}$ points) Given the moment-generating function $M_{X}(t)=e^{3 t+8 t^{2}}$ for a random variable X. Let $Z=\frac{X-3}{4}$. Find
(a) the moment generating function of Z.
\qquad
\qquad
\qquad
\qquad
(b) the mean and variance of Z.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Page 3

Question SIX : (4 points) The joint and marginal probability of X and Y are as follows.

		0	1	2	
	0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{7}{12}$
y	1	2	1		7
	1	$\overline{9}$	$\overline{6}$		$\overline{18}$
	2	1			1
		$\overline{36}$			$\overline{36}$
		5	1	1	
		12	$\overline{2}$	$\overline{12}$	

Find the covariance of X and Y.
\qquad

Page 4

Question SEVEN : (4 points) If X, Y, and Z are independent and have the means $\mu_{X}=4, \mu_{Y}=9$, and $\mu_{Z}=3$ and the variances $\sigma_{X}^{2}=3, \sigma_{Y}^{2}=7$, and $\sigma_{Z}^{2}=5$, find the mean and the variance of the random variable $W=2 X-3 Y+4 Z$.

Question EIGHT : (4 points) Let X be a continuous random variable follows the exponential distribution function with probability density

$$
f(x)= \begin{cases}\frac{1}{\theta} e^{-x / \theta} & x>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Show that $E[X]=\theta$.
\qquad

