Philadelphia University
Department of Basic Sciences and Mathematics

Academic Year:	$2015-2016$	Course Name:	Linear Algebra (1)
Semester:	Second Semester	Course Number:	250241
Exam:	Second Exam	Instructor Name:	Feras Awad
Quiz Date:	$11 / 05 / 2016$	Student Name:	-
Quiz Day:	Wednesday	University ID:	-
Mark:	$[20]$	Serial:	-

Question ONE : (5 points) Write the symbol of the most correct answer in the blank.

1. [If the i th row of an $n \times n$ matrix A is zero, what we can conclude about $A B$ where B is of the same size of A ?
(A) The i th column of $A B$ is zero.
(B) The i th row of $A B$ is zero.
(C) The trace of $A B$ equals zero.
(D) None of the above.
2. \quad Let A and B be $n \times n$ matrices. Which rule is false ?
(A) $(A+B)^{T}=B^{T}+A^{T}$
(B) $A^{3} A^{5}=A^{8}$
(C) $(A B)^{T}=A^{T} B^{T}$
(D) $\left(B^{T} B\right)^{T}=B^{T} B$
3. \quad Which of these is an elementary matrix?
(A) $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$
(B) $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
(C) $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$
(D) $\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
4. $\quad]$ What is the determinant of the matrix $\left[\begin{array}{ccc}5 & 2 & 0 \\ 0 & 3 & -1 \\ 0 & 0 & 2\end{array}\right]$.
(A) 30
(B) 10
(C) 15
(D) 0

[^0]5. \quad Let A be an $n \times n$ invertible matrix, which conclusion is not satisfied ?
(A) A is row equivalent to the $n \times n$ identity matrix.
(B) The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(C) For every $n \times n$ matrix $B,(A B)^{-1}=B^{-1} A^{-1}$.
(D) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.

Question TWO : (3 points) Prove: If $A^{T} A=A$, then A is symmetric and $A^{2}=A$.
\qquad
\qquad
\qquad

Question THREE : (2 points) Fill in the missing entries (marked with \times) so the matrix $A=\left[\begin{array}{ccc}\times & \times & 4 \\ 0 & \times & \times \\ \times & -1 & \times\end{array}\right]$ is skew-symmetric.
\qquad
\qquad

Question FOUR : (4 points) If $\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=-3$, find $\left|\begin{array}{ccc}-a & -b & -c \\ 2 g & 2 h & 2 i \\ d-g & e-h & f-i\end{array}\right|$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question FIVE : (6 points) For the matrix $A=\left[\begin{array}{lll}2 & 6 & 6 \\ 2 & 7 & 6 \\ 2 & 7 & 7\end{array}\right]$, find A^{-1} and $\operatorname{det}(A)$.
\qquad

[^0]: ${ }^{1}$ Internal Examiner : Dr. Marouf Samhan

