

Philadelphia University Department of Basic Sciences and Mathematics

Academic Year:	2015-2016	Course Name:	Linear Algebra $(1)^1$
Semester:	Second Semester	Course Number:	250241
Exam:	Second Exam	Instructor Name:	Feras Awad
Quiz Date:	11/05/2016	Student Name:	
Quiz Date: Quiz Day:	11/05/2016 Wednesday	Student Name: University ID:	

Question ONE : (5 points) Write the symbol of the *most* correct answer in the blank.

- - (A) The ith column of AB is zero.
 - B is zero. (B) The *i*th row of AB is zero.
 - (C) The trace of AB equals zero.
- (D) None of the above.

2. Let *A* and *B* be $n \times n$ matrices. Which rule is false ?

(A)
$$(A+B)^T = B^T + A^T$$

(B) $A^3A^5 = A^8$
(C) $(AB)^T = A^TB^T$
(D) $(B^TB)^T = B^TB$

 3. $\begin{bmatrix} \\ \\ \end{bmatrix}$ Which of these is an elementary matrix ?

 (A) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

4.
$$\begin{bmatrix} \\ \\ \\ \end{bmatrix}$$
 What is the determinant of the matrix $\begin{bmatrix} 5 & 2 & 0 \\ 0 & 3 & -1 \\ 0 & 0 & 2 \end{bmatrix}$.
(A) 30 (B) 10 (C) 15 (D) 0

¹Internal Examiner : Dr. Marouf Samhan

5. Let A be an $n \times n$ invertible matrix, which conclusion is not satisfied ?

- (A) A is row equivalent to the $n \times n$ identity matrix.
- (B) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (C) For every $n \times n$ matrix B, $(AB)^{-1} = B^{-1}A^{-1}$.
- (D) det (A^T) = det (A).

Question TWO : (3 points) Prove: If $A^T A = A$, then A is symmetric and $A^2 = A$.

Question THREE : (2 points) Fill in the missing entries (marked with \times) so the matrix

 $A = \begin{bmatrix} \times & \times & 4 \\ 0 & \times & \times \\ \times & -1 & \times \end{bmatrix}$ is skew-symmetric.

Question FOUR : (4 points) If $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = -3$, find $\begin{vmatrix} -a & -b & -c \\ 2g & 2h & 2i \\ d-g & e-h & f-i \end{vmatrix}$.

