

Philadelphia University Department of Basic Sciences and Mathematics

Academic Year:	2015-2016	Course Name:	Linear Algebra $(1)^1$
Semester:	Second Semester	Course Number:	250241
Exam:	Final Exam	Instructor Name:	Feras Awad
Exam Date:	12/06/2016	Student Name:	
Exam Date: Exam Day:	12/06/2016 Sunday	Student Name: University ID:	

1. (4 points) Use Cramer's Rule to solve the linear system $\begin{cases} x_1 + 2x_2 = 5 \\ -x_1 + x_2 = 1 \end{cases}$

¹Internal Examiner : Dr. Marouf Samhan

For	the matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & -1 & 2 \\ 2 & 1 & -1 \end{bmatrix}$, find
(a)	(4 points) adj(A)
(b)	(2 points) det(A)
(c)	(2 points) A^{-1}
	[2]

3. (3 points) Let $\vec{u} = (1, 2, -3, 1), \vec{v} = (0, 2, -1, -2), \text{ and } \vec{w} = (2, -2, 1, 3), \text{ find } ||2\vec{u} + \vec{w} - 3\vec{v}||.$

4. (4 points) Let $\vec{u_1} = (1,3,4)$, $\vec{u_2} = (2,-1,3)$, and $\vec{u_3} = (-3,2,-4)$. Write $\vec{v} = (-1,7,2)$ as a linear combination of $\vec{u_1}$, $\vec{u_2}$, and $\vec{u_3}$.

	(3 points) Determine whether the matrix $A = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$ is orthogonal or not
(b)	(4 points) Prove that if A is an orthogonal matrix, then $det(A) = \pm 1$.
Fine	1 an example of 2×2 matrices A, B , and C such that
Fina (a)	d an example of 2×2 matrices A, B , and C such that (2 points) $A^2 = -I_2$.
Find (a)	d an example of 2×2 matrices A, B , and C such that (2 points) $A^2 = -I_2$.
Find (a)	d an example of 2×2 matrices A, B , and C such that (2 points) $A^2 = -I_2$.
Find (a) (b)	A an example of 2×2 matrices A , B , and C such that (2 points) $A^2 = -I_2$. (2 points) $BC = 0$ although no entries of B or C are zero.
Find (a) (b)	A an example of 2×2 matrices A , B , and C such that (2 points) $A^2 = -I_2$. (2 points) $BC = 0$ although no entries of B or C are zero.
Find (a) (b)	d an example of 2×2 matrices A , B , and C such that (2 points) $A^2 = -I_2$. (2 points) $BC = 0$ although no entries of B or C are zero.

7. (a) (3 points) Let A be a nonsingular $n \times n$ matrix. Assuming $n \ge 2$, prove that $\det(\operatorname{adj}(A)) = [\det(A)]^{n-1}$.

(b) (3 points) Prove that if A is $n \times n$ invertible matrix, then $\operatorname{adj}(A^{-1}) = [\operatorname{adj}(A)]^{-1}$.

8. (4 points) Suppose that $A = \begin{bmatrix} n & -1 & \cdots & -1 \\ -1 & n & \cdots & -1 \\ \vdots & \vdots & \cdots & \vdots \\ -1 & -1 & \cdots & n \end{bmatrix}$ is an invertible matrix of size $n \times n$. Find the value for c if $A^{-1} = \frac{1}{n+1} \begin{bmatrix} c & 1 & \cdots & 1 \\ 1 & c & \cdots & 1 \\ \vdots & \vdots & \cdots & \vdots \\ 1 & 1 & \cdots & c \end{bmatrix}$.