

Philadelphia University Department of Basic Sciences and Mathematics

Academic Year: Semester: Exam:	$2015-2016$ Second Semester Final Exam	Course Name: Course Number: Instructor Name:	Linear Algebra (1) ${ }^{1}$ 250241 Feras Awad
Exam Date: Exam Day: Mark:	$12 / 06 / 2016$ Sunday $\text { [} 40 \text {] }$	Student Name: University ID: Serial:	——

1. (4 points) Use Cramer's Rule to solve the linear system $\left\{\begin{array}{l}x_{1}+2 x_{2}=5 \\ -x_{1}+x_{2}=1\end{array}\right.$.
\qquad
[^0]2. For the matrix $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 1 & -1 & 2 \\ 2 & 1 & -1\end{array}\right]$, find
(a) (4 points) $\operatorname{adj}(A)$
\qquad
(b) (2 points) $\operatorname{det}(A)$
\qquad
\qquad
\qquad
\qquad
\qquad
(c) (2 points) A^{-1}
\qquad
\qquad
\qquad
\qquad
\qquad
3. (3 points) Let $\vec{u}=(1,2,-3,1), \vec{v}=(0,2,-1,-2)$, and $\vec{w}=(2,-2,1,3)$, find $\|2 \vec{u}+\vec{w}-3 \vec{v}\|$.
\qquad
\qquad
\qquad
\qquad
4. (4 points) Let $\vec{u}_{1}=(1,3,4), \overrightarrow{u_{2}}=(2,-1,3)$, and $\overrightarrow{u_{3}}=(-3,2,-4)$. Write $\vec{v}=(-1,7,2)$ as a linear combination of $\overrightarrow{u_{1}}, \overrightarrow{u_{2}}$, and $\overrightarrow{u_{3}}$.
5. An invertible square matrix A is called orthogonal if $A^{T}=A^{-1}$.
(a) (3 points) Determine whether the matrix $A=\left[\begin{array}{cc}1 & -1 \\ -1 & -1\end{array}\right]$ is orthogonal or not.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (4 points) Prove that if A is an orthogonal matrix, then $\operatorname{det}(A)= \pm 1$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6. Find an example of 2×2 matrices A, B, and C such that
(a) (2 points) $A^{2}=-I_{2}$.
\qquad
\qquad
\qquad
\qquad
(b) (2 points) $B C=0$ although no entries of B or C are zero.
\qquad
\qquad
\qquad
\qquad
7. (a) (3 points) Let A be a nonsingular $n \times n$ matrix. Assuming $n \geq 2$, prove that $\operatorname{det}(\operatorname{adj}(A))=[\operatorname{det}(A)]^{n-1}$.
\qquad
\qquad
\qquad
\qquad
(b) (3 points) Prove that if A is $n \times n$ invertible matrix, then $\operatorname{adj}\left(A^{-1}\right)=[\operatorname{adj}(A)]^{-1}$.
\qquad
\qquad
\qquad
\qquad
\qquad
8. (4 points) Suppose that $A=\left[\begin{array}{cccc}n & -1 & \cdots & -1 \\ -1 & n & \cdots & -1 \\ \vdots & \vdots & \cdots & \vdots \\ -1 & -1 & \cdots & n\end{array}\right]$ is an invertible matrix of size $n \times n$.

Find the value for c if $A^{-1}=\frac{1}{n+1}\left[\begin{array}{cccc}c & 1 & \cdots & 1 \\ 1 & c & \cdots & 1 \\ \vdots & \vdots & \cdots & \vdots \\ 1 & 1 & \cdots & c\end{array}\right]$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: ${ }^{1}$ Internal Examiner : Dr. Marouf Samhan

