Philadelphia University
 Department of Basic Sciences and Mathematics

First Exam
Linear Algebra (2)
11-11-2012

Name:
Number:
Serial:
Section: (1)

1. (6 points) Consider the vectors $\mathbf{v}_{1}=(1,0,0)$, $\mathbf{v}_{2}=(2,2,0)$, and $\mathbf{v}_{3}=(3,3,3)$. Show that the set $\mathbf{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ form a basis for \mathbb{R}^{3}.
\qquad
2. (4 points) Determine whether the statement is true or false:
(a) [] There is a basis of 12 vectors in \mathbb{R}^{15}.
(b) [] The zero vector space has dimension zero.
(c) [] There is a vector space consisting of exactly two distinct elements.
(d) [] Two subsets of a vector space \mathbf{V} that span the same subspace of \mathbf{V} must be equal.
3. (4 points) Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be a basis for a vector space \mathbf{V}. Show that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is linearly independent set of vectors where $\mathbf{u}_{1}=\mathbf{v}_{1}, \mathbf{u}_{2}=\mathbf{v}_{1}+\mathbf{v}_{2}$, and $\mathbf{u}_{3}=\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}$.
\qquad
4. (6 points) Consider the bases $\mathbf{B}=\{(1,0),(0,1)\}$ and $\mathbf{B}^{\prime}=\{(2,1),(-3,4)\}$ for \mathbb{R}^{2}.
(a) Find the transition matrix \mathbf{P} from \mathbf{B} to \mathbf{B}^{\prime}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Compute the coordinate vector $[\mathbf{w}]_{\mathbf{B}}$ where $\mathbf{w}=(3,-5)$, and then use it and the transition matrix \mathbf{P} from part (a) to compute $[\mathbf{w}]_{\mathbf{B}^{\prime}}$.
\qquad
\qquad
\qquad
\qquad
\qquad
