Philadelphia University Department of Basic Sciences and Mathematics

First Exam	Linear Algebra (2)		11-11-2012
Name:	Number:	Serial:	Section: (1)
1. (6 points) Contract that the set S	nsider the vectors $\mathbf{v}_1 =$ = { $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ } form a b	$(1, 0, 0), \mathbf{v}_2 = (2, 2, 0), $ and asis for \mathbb{R}^3 .	$\mathbf{v}_3 = (3, 3, 3)$. Show

- 2. (4 points) Determine whether the statement is true or false:
 - (a) [] There is a basis of 12 vectors in \mathbb{R}^{15} .
 - (b) [] The zero vector space has dimension zero.
 - (c) [] There is a vector space consisting of exactly two distinct elements.
 - (d) $[\]$ Two subsets of a vector space ${\bf V}$ that span the same subspace of ${\bf V}$ must be equal.

3. (4 points) Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis for a vector space **V**. Show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is linearly independent set of vectors where $\mathbf{u}_1 = \mathbf{v}_1$, $\mathbf{u}_2 = \mathbf{v}_1 + \mathbf{v}_2$, and $\mathbf{u}_3 = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3$.

4. (6 points) Consider the bases B = {(1,0), (0,1)} and B' = {(2,1), (-3,4)} for ℝ².
(a) Find the transition matrix P from B to B'.

(b) Compute the coordinate vector $[\mathbf{w}]_{\mathbf{B}}$ where $\mathbf{w} = (3, -5)$, and then use it and the transition matrix **P** from part (a) to compute $[\mathbf{w}]_{\mathbf{B}'}$.