Philadelphia University **Department of Basic Sciences and Mathematics**

Second Exam	Linear Algebra (2)		16-12-2012
Name:	Number:	Serial:	Section: (1)
1. (2 points) Let	${\bf A}$ be a 5 \times 9 matrix with	$\operatorname{Rank}(\mathbf{A}) = 2$. Find t	he dimension of the

- (a) [] row space of **A**.
- (b) [] column space of **A**.
- (c) [] null space of **A**.
- (d) [] null space of \mathbf{A}^T .
- 2. (3 points) Determine whether the statement is true or false:

- (a) [] If **R** is the reduced row echelon form of **A**, then those column vectors of **R** that contain the leading 1's form a basis for the column space of A.
- (b) [] If $\operatorname{Rank}(\mathbf{A}^{T}) = \operatorname{Rank}(\mathbf{A})$, then **A** must be square matrix.
- (c) [] If **A** is a 2 × 3 matrix, then the domain of the transformation $T_{\mathbf{A}}$ is \mathbb{R}^2 .
- 3. (4 points) Determine whether the matrix operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by the equations

$$w_1 = 9x_1 + 5x_2 w_2 = 2x_1 - 7x_2$$

is 1-1; if so, find the standard matrix for the inverse operator, and find $T^{-1}(w_1, w_2)$.

MR. FERAS AWAD DECEMBER 10, 2012

Cons	sider the matrix $\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 0 & -1 \end{bmatrix}$.
	(6 points) Find the eigenvalues and eigenvectors for the matrix A .
(b)	(2 points) Find the matrix \mathbf{P} that diagonalizes \mathbf{A} , then find \mathbf{P}^{-1} .
(c)	(2 points) Evaluate \mathbf{A}^5 .