Philadelphia University
 Department of Basic Sciences and Mathematics

Final Exam
Linear Algebra 2
15-1-2013

Name:
Number:
Serial:
Section: (1)

1. (5 points) Determine whether the statement is true (\mathbf{T}) or false (\mathbf{F}) :
(a) [] A positive definite matrix is invertible.
(b) [] If \mathbf{A} is positive definite, then $-\mathbf{A}$ is negative definite.
(c) [] If \mathbf{A} is a square matrix, then $\mathbf{A}^{\mathbf{T}} \mathbf{A}$ and $\mathbf{A A}^{\mathbf{T}}$ are orthogonally diagonalizable.
(d) [] If \mathbf{A} is both invertible and orthogonally diagonalizable, then \mathbf{A}^{-1} is orthogonally diagonalizable.
(e) [] The matrix $\left[\begin{array}{rr}1 & -2 \\ 2 & 1\end{array}\right]$ is orthogonal.
2. (3 points) Express the quadratic form $6 x_{1}^{2}+4 x_{2}^{2}-7 x_{3}^{2}-2 x_{1} x_{2}+4 x_{1} x_{3}+x_{2} x_{3}$ in the matrix notation $\mathbf{x}^{\mathbf{T}} \mathbf{A} \mathbf{x}$, where \mathbf{A} is symmetric matrix.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. (4 points) Suppose that \mathbf{u} and \mathbf{v} are vectors such that $\langle\mathbf{u}, \mathbf{v}\rangle=3,\|\mathbf{u}\|=5$, and $\|\mathbf{v}\|=3$, evaluate $\langle\mathbf{u}-\mathbf{v}, \mathbf{u}+\mathbf{v}\rangle$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4. (4 points) Let $\mathbf{f}=1-x^{2}$ and $\mathbf{g}=3+12 x-4 x^{2}$. Use the inner product

$$
\langle\mathbf{f}, \mathbf{g}\rangle=a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}
$$

on $\mathbf{P}_{\mathbf{2}}$ to compute the cosine of the angle between \mathbf{f} and \mathbf{g}.
\qquad
\qquad
\qquad
\qquad
\qquad
5. (4 points) What conditions must a and b satisfy for the matrix $\mathbf{A}=\left[\begin{array}{ll}a+b & b-a \\ a-b & b+a\end{array}\right]$ to be orthogonal.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6. (5 points) Prove that: there is no vector space consisting of exactly two elements.
\qquad
7. (15 points) Find a matrix \mathbf{P} that orthogonally diagonalizes

$$
\mathbf{A}=\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]
$$

Page 3

