Philadelphia University Department of Basic Sciences and Mathematics

Final Exam Name:	Linear Algebra 2		15-1-2013
	Number:	Serial:	Section: (1)
 (5 points) Do (a) [] A p (b) [] If A (c) [] If A (d) [] If A (d) [] If A (e) [] The 	etermine whether the state positive definite matrix is in a is positive definite, then a is a square matrix, then a is both invertible and orthin agonalizable. The matrix $\begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$ is orth	ement is true (\mathbf{T}) or false nvertible. $-\mathbf{A}$ is negative definite. $\mathbf{A}^{\mathbf{T}}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\mathbf{T}}$ are orth hogonally diagonalizable.	(\mathbf{F}) : nogonally diagonaliz- , then \mathbf{A}^{-1} is orthog-
2. (3 points) Exmatrix notati	press the quadratic form for $\mathbf{x}^{T}\mathbf{A}\mathbf{x}$, where \mathbf{A} is sym	$6x_1^2 + 4x_2^2 - 7x_3^2 - 2x_1x_2 +$ metric matrix.	- $4x_1x_3 + x_2x_3$ in the
3. (4 points) Su $\ \mathbf{v}\ = 3$, eval	uppose that \mathbf{u} and \mathbf{v} are uate $\langle \mathbf{u} - \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle$.	vectors such that $\langle \mathbf{u}, \mathbf{v} \rangle$	$= 3, \mathbf{u} = 5, \text{ and}$

Mr. Feras Awad January 3, 2013 4. (4 points) Let $\mathbf{f} = 1 - x^2$ and $\mathbf{g} = 3 + 12x - 4x^2$. Use the inner product

 $\langle \mathbf{f}, \mathbf{g} \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2$

on $\mathbf{P_2}$ to compute the cosine of the angle between \mathbf{f} and $\mathbf{g}.$

5. (4 points) What conditions must a and b satisfy for the matrix $\mathbf{A} = \begin{bmatrix} a+b & b-a \\ a-b & b+a \end{bmatrix}$ to be orthogonal.

6. (5 points) Prove that: there is no vector space consisting of exactly two elements.

7. (15 points) Find a matrix ${\bf P}$ that orthogonally diagonalizes

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

