

Philadelphia University Department of Basic Sciences and Mathematics

Academic Year:	$2016-2017$	Course Name:	Numerical Analysis
Semester:	Second Semester		
Exam:	First Exam	Course Number: Instructor Name:	Feras Awad
Exam Date:	$03 / 04 / 2017$	Student Name:	-
Exam Day:	Monday	University ID:	-
Mark:	$[20]$	Serial:	-

1. The iteration formula

$$
x_{n+1}=x_{n}-\left(\cos x_{n}\right)\left(\sin x_{n}\right)+R \cos ^{2} x_{n}
$$

where R is a positive constant, was obtained by applying Newton's method to some function $f(x)$. What was $f(x)$? For what value does the sequence converge?
\qquad
2. Find a bound for the number of iterations needed to achieve an approximation for $\sqrt[3]{25}$ with accuracy 10^{-4} using the Bisection Algorithm on $[2,3]$.
\qquad \longrightarrow
\qquad
3. Show that the function $g(x)=2^{-x}$ has a unique fixed point on $\left[\frac{1}{3}, 1\right]$, then use fixed-point iteration to find the third approximation p_{3} starting with $p_{0}=1$.
\qquad
4. Let $f(x)=e^{x}$ where $x \in[0,2]$. Approximate $f(0,25)$ by using the second Lagrange interpolating polynomial with $x_{0}=0, x_{1}=1$, and $x_{2}=2$.
\qquad
5. Suppose $x_{i}=i$, for $i=0,1,2,3$ and it is known that

$$
P_{0,1}(x)=x+1, \quad P_{1,2}=3 x-1, \quad \text { and } \quad P_{1,2,3}(1.5)=4
$$

Find $P_{0,1,2,3}(1.5)$.
\qquad

