

Philadelphia University Department of Basic Sciences and Mathematics

Academic Year:	$2016-2017$	Course Name:	Numerical Analysis
Semester:	Second Semester	Course Number:	250371
Exam:	Second Exam	Instructor Name:	Feras Awad
Exam Date:	$03 / 05 / 2017$	Student Name:	-
Exam Day:	Wednesday	University ID:	-
Mark:	$[20]$	Serial:	-

1. For a function $f(x)$, the Newton divided differences are given by

$$
\begin{array}{llll}
\hline x_{0}=0.0 & f\left[x_{0}\right] & f\left[x_{0}, x_{1}\right] & f\left[x_{0}, x_{1}, x_{2}\right]=\frac{50}{7} \\
x_{1}=0.4 & f\left[x_{1}\right] & f\left[x_{1}, x_{2}\right]=10 & \\
x_{2}=0.7 & f\left[x_{2}\right]=6 & \\
\hline
\end{array}
$$

(a) (1 point) Find the polynomial $p(x)$ that interpolates $f(x)$ at the nodes x_{0}, x_{1}, and x_{2}.
\qquad
\qquad
\qquad
\qquad
(b) (3 points) Determine the missing values in the table.
\qquad
2. (4 points) Develop a formula for the first derivative $f^{\prime}(x)$ in terms of $f(x-h), f(x)$, and $f(x+2 h)$. What is the order of error of this formula ?
\qquad
3. Consider the following table of values of a function $f(x)$.

x	1.0	1.2	1.4
$f(x)$	1.0000	1.2625	1.6595

(a) (1 point) Use the forward-difference formula to approximate the value of $f^{\prime}(1.0)$.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (1 point) Use the central-difference formula to approximate the value of $f^{\prime}(1.2)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) (2 points) Approximate the value of $\int_{1.0}^{1.4} f(x) d x$ using the mid-point rule.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4. (5 points) The quadrature formula $\int_{-1}^{1} f(x) d x=c_{0} f(-1)+c_{1} f(0)+c_{2} f(1)$ is exact for all polynomials of degree less than or equal to 2 . Determine c_{0}, c_{1}, and c_{2}.
\qquad
5. (3 points) The Trapezoidal rule applied to $\int_{0}^{2} f(x) d x$ gives the value 4 , and Simpson's rule gives the value 2 . Find the value of $f(1)$?
\qquad

