

Philadelphia University Department of Basic Sciences and Mathematics

Academic Year:	2016-2017	Course Name:	Numerical Analysis
Semester:	Second Semester	Course Number:	250371
Exam:	Second Exam	Instructor Name:	Feras Awad
Exam Date:	03/05/2017	Student Name:	
Exam Day:	Wednesday	University ID:	

1. For a function f(x), the Newton divided differences are given by

$x_0 = 0.0$	$f[x_0]$	$f[\mathbf{x}_0 \ \mathbf{x}_1]$	50
$x_1 = 0.4$	$f[x_1]$	$f[x_0, x_1] = 10$	$f[x_0, x_1, x_2] = \frac{50}{7}$
$x_2 = 0.7$	$f[x_2] = 6$	$/[x_1, x_2] = 10$	

- (a) (1 point) Find the polynomial p(x) that interpolates f(x) at the nodes x_0 , x_1 , and x_2 .
- (b) (3 points) Determine the missing values in the table.

2. (4 points) Develop a formula for the first derivative f'(x) in terms of f(x-h), f(x), and f(x+2h). What is the order of error of this formula? [2]

3. Consider the following table of values of a function f(x).

x	1.0	1.2	1.4
f(x)	1.0000	1.2625	1.6595

(a) (1 point) Use the forward-difference formula to approximate the value of f'(1.0).

(b) (1 point) Use the central-difference formula to approximate the value of f'(1.2).

(c) (2 points) Approximate the value of $\int_{1.0}^{1.4} f(x) dx$ using the mid-point rule.

4. (5 points) The quadrature formula $\int_{0}^{1} f(x)dx = c_0f(-1) + c_1f(0) + c_2f(1)$ is exact for all polynomials of degree less than or equal to 2. Determine c_0 , c_1 , and c_2 .

[4]
