

Philadelphia University Department of Basic Sciences and Mathematics

Academic Year:	$2016-2017$	Course Name:	Numerical Analysis
Semester:	Second Semester	Course Number:	250371
Exam:	Final Exam	Instructor Name:	Feras Awad
Exam Date:	$15 / 06 / 2017$	Student Name:	-
Exam Day:	Thursday	University ID:	-
Mark:	$[40]$	Serial:	-

1. (3 points) Find $\|\vec{x}\|_{1}$ and $\|\vec{x}\|_{2}$ if $\vec{x}=\left(3,-4,0, \frac{3}{2}\right)^{t} \in \mathbb{R}$.
\qquad
\qquad
\qquad
\qquad
\qquad
2. (3 points) Let $A=\left[\begin{array}{ccc}4 & -1 & 7 \\ -1 & 4 & 0 \\ -7 & 0 & 4\end{array}\right]$. Evaluate $\|A\|_{\infty}$.
\qquad
\qquad
\qquad
\qquad
\qquad
3. (4 points) Prove that the sequence of vectors $\left\{\vec{x}^{(k)}\right\}_{k=1}^{\infty}$ where $\vec{x}^{(k)}=\left(\frac{1}{k}, e^{1-k},-\frac{2}{k^{2}}\right)^{t}$ converges, and find its limit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4. (7 points) Find the first two iterations of the Jacobi method for the following linear system, using $\vec{x}^{(0)}=(0,0,0)^{t}$.

$$
\begin{aligned}
10 x_{1}-x_{2} & =9 \\
-x_{1}+10 x_{2}-2 x_{3} & =7 \\
-2 x_{2}+10 x_{3} & =6
\end{aligned}
$$

\qquad
5. (6 points) Use divided difference method to show that the polynomial interpolating the following data has degree 3 .

\qquad
6. (6 points) Suppose that $f(0)=1, f(1 / 2)=5 / 2, f(1)=2$, and $f(1 / 4)=f(3 / 4)=\alpha$. Find α if the composite Trapezoidal rule with $n=4$ gives the value $7 / 4$ for $\int_{0}^{1} f(x) d x$.
\qquad
7. (4 points) It can be shown that the equation

$$
\frac{3}{2} x-6-\frac{1}{2} \sin (2 x)=0
$$

has a unique real root. Find an interval on which this unique real root is guaranteed to exist.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8. Consider the initial-value problem

$$
y^{\prime}=t e^{3 t}-2 y \quad, \quad 0 \leq t \leq 1 \quad, \quad y(0)=0 .
$$

(a) (3 points) Show that the IVP has a unique solution on the convex set

$$
\mathbf{D}=\{(t, y): t \in[0,1], y \in \mathbb{R}\} .
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (4 points) Use Euler's method to approximate the solution for the IVP with $h=0.5$
\qquad

