Academic Year:	$2016-2017$	Course Name:	Linear Programming
Semester:	Summer Semester	Course Number: Exam:	First Exam

Question ONE : Write the symbol of the correct answer in the blank beside the question number.

1. $\quad]$ Which of the following is a half-space in \mathbb{R}^{3} ?
(A) $5 x_{1}-7 x_{2}+x_{3}+11 x_{4} \leq 1$
(B) $2 x_{1}-3 x_{2}+x_{3}=7$
(C) $2 x_{1}-3 x_{2}+x_{3} \geq 7$
(D) $5 x_{1}-7 x_{2}+x_{3}+11 x_{4}=1$
2. $\quad]$ Which of the following sets is CONVEX?
(A)
(B)

(C)

(D)

3. Infeasibility means that the number of solutions to the linear programming models that satisfies all constraints is
(A) at most 1
(B) 0
(C) infinite
(D) at least 2
4. [The direction of increase in z when we maximize $z=x_{1}-x_{2}$ is
(A) up-left
(B) down-right
(C) down-left
(D) up-right
5. [$]_{0 \leq t \leq 1}$ The is line segment in \mathbb{R}^{2} joining the points $\mathbf{p}=(1,2)$ and $\mathbf{q}=(2,4)$, given that
(A) $(1+t, 2+2 t)$
(B) $(1+3 t, 2+t)$
(C) $(1+2 t, 2+t)$
(D) $(1+2 t, 2+2 t)$

Question TWO : Solve the following LP problem graphically.

$$
\begin{array}{cc}
\text { Maximize } & z=120 x_{1}+100 x_{2} \\
\text { Subject to } & x_{1}+x_{2} \leq 4 \\
& 5 x_{1}+3 x_{2} \leq 15 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

\qquad

Question THREE : Solve the following LP problem using the Simplex Algorithm.

$$
\begin{aligned}
\text { Maximize } & z=5 x_{1}+2 x_{2} \\
\text { Subject to } & 2 x_{1}+x_{2} \leq 4 \\
& -x_{1}+3 x_{2} \leq 6 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Time : 60 Minutes

Question FOUR : Without using the Simplex Method, solve the LP problem given by

$$
\begin{aligned}
\text { Maximize } & z=5 x_{1}-6 x_{2}+3 x_{3}-5 x_{4}+12 x_{5} \\
\text { Subject to } & x_{1}+3 x_{2}+5 x_{3}+6 x_{4}+3 x_{5} \leq 90 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{aligned}
$$

HINT: What are the BASIC and NONBASIC variables of this problem ?]
\qquad

