Philadelphia University Department of Basic Sciences and Mathematics

Academic Year:	$2016-2017$	Course Name:	Linear Programming
Semester:	Summer Semester	Course Number:	250373
Exam:	Second Exam	Instructor Name:	Feras Awad
Exam Date:	$08 / 08 / 2017$	Student Name:	-
Exam Day:	Tuesday	University ID:	-
Exam Mark:	$[20]$	Serial:	-

1. (6 points) Use the Big M-method to solve the following problem.

$$
\begin{array}{rr}
\text { Maximize } & z=x_{1}+5 x_{2}+3 x_{3} \\
\text { Subject to } & x_{1}+2 x_{2}+x_{3}=3 \\
& 2 x_{1}-x_{2}=4 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Time : 60 Minutes
2. (8 points) Find the optimal tableau using the laws of matrices for the following LP if x_{2} and s_{2} are the basic optimal solution set of the problem.

$$
\begin{aligned}
\text { Maximize } & z=2 x_{1}+5 x_{2} \\
\text { Subject to } & x_{1}+2 x_{2} \leq 16 \\
& x_{1}-x_{2} \leq 12 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

\qquad

Time : 60 Minutes
3. (6 points) Determine whether the following problem has

- unique optimal solution, or \quad Maximize $z=2 x_{1}-x_{2}+3 x_{3}$
- alternative optimal solution(s), or
- unbounded solution.

Maximize	$z=2 x_{1}-x_{2}+3 x_{3}$	
Subject to	$x_{1}-x_{2}+5 x_{3} \leq 10$	
	$2 x_{1}-x_{2}+3 x_{3} \leq 40$	
	$x_{1}, x_{2}, x_{3} \geq 0$	

z		RHS
Row 0		
Row 0		
Row 0		
Row 0		
Row 0		
Row 0		

