Philadelphia University
Department of Basic Sciences and Mathematics

Academic Year:	$2016-2017$	Course Name:	Linear Programming
Semester:	Summer Semester	Course Number:	250373
Exam:	Final Exam	Instructor Name:	Feras Awad
Exam Date:	$23 / 08 / 2017$	Student Name:	-
Exam Day:	Wednesday	University ID:	-
Exam Mark:	$[40]$	Serial:	-

Question ONE [10 Points] : Write the symbol of the correct answer in the blank beside the question number.

1. [The shaded region in the figure is the solution region for the system of linear

(A) $-x_{1}+3 x_{2} \leq 3, x_{1}+x_{2} \geq 2$
(B) $-x_{1}+3 x_{2} \geq 3, x_{1}+x_{2} \leq 2$
(C) $-x_{1}+3 x_{2} \geq 3, x_{1}+x_{2} \geq 2$
(D) $-x_{1}+3 x_{2} \leq 3, x_{1}+x_{2} \leq 2$
2. [An LP has 4 variables and 2 constraints, then its dual problem has
(A) 2 constraints, 4 variables
(B) 4 constraints, 2 variables
(C) 4 constraints, 4 variables
(D) 2 constraints, 2 variables
3. \quad A constraint that does not affect the feasible region is a
(A) redundant constraint
(B) non-negativity constraint
(C) standard constraint
(D) slack constraint
4. \quad All linear programming problems have all of the following properties EXCEPT
(A) alternative optimal solutions
(B) a linear objective function that is to be maximized or minimized
(C) a set of linear constraints
(D) variables that are all restricted to non-negative values

5.] Slack

(A) exists for each variable in a linear programming problem
(B) is the amount by which the left side of a \geq constraint is larger than the right side
(C) is the difference between the left and right sides of a constraint
(D) is the amount by which the left side of a \leq constraint is smaller than the right side

Question TWO [6 Points] : You are given the tableau shown below for a maximization problem. Give conditions on the unknowns a_{1}, a_{2}, a_{3}, b, and c that make the following statements true.

z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
Row 0	$-c$	2	0	0	0	10
x_{3}	-1	a_{1}	1	0	0	4
x_{4}	a_{2}	-4	0	1	0	1
x_{5}	a_{3}	3	0	0	1	b

1. The current solution is optimal.
2. The current solution is optimal, and there are alternative optimal solutions.
3. The LP is unbounded (in this part, assume that $b \geq 0$)
\qquad

Question THREE [5+4 Points] : The following is the primal LP and its optimal tableau.

$$
\begin{array}{rc}
\text { Maximize } & z=2 x_{1}+5 x_{2} \\
\text { Subject to } & x_{1}+2 x_{2} \leq 16 \\
& x_{1}-x_{2} \leq 12 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

z	x_{1}	x_{2}	s_{1}	s_{2}	RHS
Row 0	$1 / 2$	0	$5 / 2$	0	40
x_{2}	$1 / 2$	1	$1 / 2$	0	8
s_{2}	$3 / 2$	0	$1 / 2$	1	20

1. Suppose we change the objective function coefficient of x_{2} from 5 to $5+\Delta$. For what values of Δ will the current set of basic variables remain optimal?
\qquad
2. Find the optimal solution to the LP if we add the constraint $2 x_{1}+x_{2} \geq 6$.

Time : 120 Minutes

Question FOUR [5 Points] : Solve the following LP using the Generalized Simplex method.

$$
\begin{aligned}
\text { Maximize } & z=-2 x_{1}+x_{2} \\
\text { Subject to } & x_{1}+x_{2} \geq 5 \\
& x_{1}-2 x_{2} \geq 8 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

\qquad

Time : 120 Minutes

Question FIVE [2+4+4 Points]: Consider the following primal LP.

$$
\begin{aligned}
\text { Maximize } & z=4 x_{1}+x_{2} \\
\text { Subject to } & 3 x_{1}+2 x_{2} \leq 6 \\
& 6 x_{1}+3 x_{2} \leq 10 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

1. Find the dual problem of this LP.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Suppose that in solving this problem, row 0 of the optimal tableau is found to be

$$
z+2 x_{2}+s_{2}=\frac{20}{3}
$$

Use the Dual Theorem to prove that the computations must be incorrect.
\qquad

Time : 120 Minutes

