

Philadelphia University Department of Basic Sciences and Mathematics

Academic Year:	2016-2017	Course Name:	Linear Programming	
Semester:	Summer Semester	Course Number:	250373	
Exam:	Final Exam	Instructor Name:	Feras Awad	
Exam Date:	23/08/2017	Student Name:		
Exam Date: Exam Day:	23/08/2017 Wednesday	Student Name: University ID:		

Question ONE [10 Points] : Write the symbol of the correct answer in the **blank** beside the question number.

1. The **shaded region** in the figure is the **solution region** for the system of linear inequalities

Time: 120 Minutes

5. Slack

(A) exists for each variable in a linear programming problem

(B) is the amount by which the left side of a \geq constraint is larger than the right side

(C) is the difference between the left and right sides of a constraint

(D) is the amount by which the left side of a \leq constraint is smaller than the right side

Question TWO [6 Points]: You are given the tableau shown below for a maximization problem. Give conditions on the unknowns a_1 , a_2 , a_3 , b, and c that make the following statements true.

z	x_1	x_2	x_3	x_4	x_5	RHS
Row 0	-c	2	0	0	0	10
x_3	-1	a_1	1	0	0	4
x_4	a_2	-4	0	1	0	1
x_5	a_3	3	0	0	1	b

1. The current solution is optimal.

2. The current solution is optimal, and there are alternative optimal solutions.

3. The LP is unbounded (in this part, assume that $b \ge 0$)

Time : 120 Minutes

Feras Awad

Maximize	$z = 2x_1 + 5x_2$	\mathfrak{c}_2	z	x_1	x_2	s_1	s_2	RHS
Subject to	$x_1 + 2x_2$	₂ ≤16	Row 0	1/2	0	5/2	0	40
	$x_1 - x_2$	$_2 \leq 12$	x_2	1/2	1	1/2	0	8
	$x_1, x_2 \ge 0$		s_2	3/2	0	1/2	1	20

Question THREE [5+4 Points] : The following is the primal LP and its optimal tableau.

1. Suppose we change the objective function coefficient of x_2 from 5 to $5 + \Delta$. For what values of Δ will the current set of basic variables remain optimal?

2. Find the optimal solution to the LP if we add the constraint $2x_1 + x_2 \ge 6$.

		z		RHS
		Row 0		
		Row 0		
Time : 120 Minutes	[3]		Feras Awa	ad

Question FOUR [5 Points] : Solve the following LP using the Generalized Simplex method.

Maximize $z = -2x_1 + x_2$ Subject to $x_1 + x_2 \ge 5$ $x_1 - 2x_2 \ge 8$ $x_1, x_2 \ge 0$

z	RHS
Row 0	

Time : 120 Minutes

Feras Awad

[4]

Question FIVE [2+4+4 Points] : Consider the following primal LP.

Maximize $z = 4x_1 + x_2$ Subject to $3x_1 + 2x_2 \le 6$ $6x_1 + 3x_2 \le 10$ $x_1, x_2 \ge 0$

- 1. Find the dual problem of this LP.
- 3. Use the complementary slackness method to find the optimal dual solution knowing that the optimal solution to the primal is $x_1 = \frac{5}{3}$, $x_2 = 0$, $s_1 = 1$, and $s_2 = 0$.
- Suppose that in solving this problem, row 0 of the optimal tableau is found to be

$$z+2x_2+s_2=\frac{20}{3}.$$

Use the **Dual Theorem** to prove that the computations must be incorrect.

Time : 120 Minutes

Feras Awad