

Philadelphia University Department of Basic Sciences and Mathematics

Academic Year:	2016-2017	Course Name:	Applied Math
Semester:	Second Semester	Course Number:	250473
Exam:	First Exam	Instructor Name:	Feras Awad
Exam Date:	06/04/2017	Student Name:	
Exam Day:	Thursday	University ID:	

1. (2 points) Find the exact value of $\Gamma\left(\frac{2}{3}\right) \div \Gamma\left(\frac{8}{3}\right)$.

2. (2 points) Use Stirling's formula to evaluate $\lim_{n \to \infty} \left[\frac{n! e^n}{n^{n+\frac{1}{2}}} \right]$.

3. (4 points) The integral $Ei(x) = \int_{-\infty}^{x} \frac{e^{t}}{t} dt$ is called *exponential integral*, while the integral $li(x) = \int_{0}^{x} \frac{1}{\ln t} dt$ is called *logarithmic integral*. Show that $li(e^{x}) = Ei(x)$.

4. (4 points) Write $\int_{0}^{\infty} \frac{e^{-t}}{(1+xt)} dt$ as asymptotic series. [2]

5. (4 points) Express as a Γ function $\int_0^1 \left[\ln\left(\frac{1}{x}\right) \right]^{p-1} dx$ 6. (4 points) Evaluate $\int_0^{\pi/2} \sqrt{\tan\theta} \, d\theta$. [3]