

Philadelphia University Department of Basic Sciences and Mathematics

Academic Year:	2016-2017	Course Name:	Applied Math
Semester:	Second Semester Exam:	Course Number: Instructor Name:	250473 Feras Awad
Exam Date:	$02 / 05 / 2017$	Student Name:	-
Exam Day:	Tuesday	University ID:	-
Mark:	$[20]$	Serial:	-

1. Evaluate $\frac{d^{25}}{d x^{25}}\left[x^{2} \cos x\right]$ using Leibniz Rule.
\qquad
2. Express the function $f(x)=3 x^{2}+x-1$ as a linear combinations of Legendre polynomials. $\left[\right.$ Hint: $P_{0}(x)=1, P_{1}(x)=x$, and $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$.]
3. Prove the recursion relation of Legendre polynomials

$$
\left(1-x^{2}\right) P_{n}^{\prime}(x)=n P_{n-1}(x)-n x P_{n}(x)
$$

using the two recurrence relations

$$
\begin{align*}
& x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)=n P_{n}(x) \tag{1}\\
& P_{n}^{\prime}(x)-x P_{n-1}^{\prime}(x)=n P_{n-1}(x) \tag{2}
\end{align*}
$$

\qquad
4. Solve the ordinary differential equation $y^{\prime}=2 y$ by series.
$\left[\right.$ Hint: $\left.e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}, \quad \sin x=\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!}, \quad \cos x=\sum_{k=0}^{\infty} \frac{x^{2 k}}{(2 k)!}.\right]$
5. Show that $P_{n}(x)$ and $P_{n}^{\prime}(x)$ are orthogonal on $(-1,1)$.
\qquad

