

Philadelphia University Department of Basic Sciences and Mathematics

Academic Year:	2016-2017	Course Name:	Applied Math
Semester:	Second Semester	Course Number:	250473
Exam:	Second Exam	Instructor Name:	Feras Awad
Exam Date:	02/05/2017	Student Name:	
Exam Day:	Tuesday	University ID:	
Mark	[20]	Sorial	

1. Evaluate $\frac{d^{25}}{dx^{25}} [x^2 \cos x]$ using Leibniz Rule.

2. Express the function $f(x) = 3x^2 + x - 1$ as a linear combinations of Legendre polynomials. $\begin{bmatrix} \text{Hint: } P_0(x) = 1, P_1(x) = x, \text{ and } P_2(x) = \frac{1}{2}(3x^2 - 1). \end{bmatrix}$ 3. Prove the recursion relation of Legendre polynomials

$$(1-x^2)P'_n(x) = nP_{n-1}(x) - nxP_n(x)$$

using the two recurrence relations

$$xP'_{n}(x) - P'_{n-1}(x) = nP_{n}(x)$$
(1)

$$P'_{n}(x) - xP'_{n-1}(x) = nP_{n-1}(x)$$
⁽²⁾

4. Solve the ordinary differential equation y' = 2y by series. $\left[\text{Hint: } e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}, \quad \sin x = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}, \quad \cos x = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}. \right]$ [4]

5. Show that $P_n(x)$ and $P'_n(x)$ are orthogonal on (-1,1). [5]