

Philadelphia University Department of Basic Sciences and Mathematics

Academic Year: Semester: Exam:	$2016-2017$ Second Semester Final Exam	Course Name: Course Number: Instructor Name:	Applied Math 250473 Feras Awad
Exam Date: Exam Day: Mark:	$11 / 06 / 2017$ Sunday $\text { [} 40 \text {] }$	Student Name: University ID: Serial:	

1. Evaluate $\frac{d^{100}}{d x^{100}}\left[x^{2} e^{-x}\right]$ when $x=100$.
\qquad
2. Find the exact value of $\int_{0}^{\pi / 2} \sqrt{\tan \theta} d \theta$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. Find the norm of the function $f(x)=x e^{-x / 2}$ on $(0, \infty)$.
\qquad
4. Evaluate $\lim _{x \rightarrow 0}\left[\frac{1}{x} J_{1}(x)\right]$.
\qquad
5. Show that $\sqrt{\frac{\pi x}{2}} J_{-\frac{1}{2}}(x)=\cos x$. \quad Hint: $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}=\cos x$ and $\left.\Gamma\left(n+\frac{1}{2}\right)=\frac{(2 n)!}{4^{n} n!} \sqrt{\pi}\right]$
\qquad
6. Prove that $\int_{-1}^{1} P_{n}^{2}(x) d x=\frac{2}{1+2 n}$.
[Hint: you may use the recursion relation $\left.n P_{n}(x)=x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)\right]$
\qquad
7. Expand in a Legendre series, the function $f(x)$ given by the graph.

Hint: $\left.P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)\right]$
\qquad
8. By a method similar to that we used to show that the P_{n} 's are an orthogonal set of functions on $(-1,1)$, show that the solutions of

$$
y_{n}^{\prime \prime}=-n^{2} y_{n} \quad ; \quad y(-\pi)=y(\pi)=0,
$$

are an orthogonal set on $(-\pi, \pi)$.
\qquad

