

Philadelphia University Department of Basic Sciences and Mathematics

Academic Year:	2016-2017	Course Name:	Applied Math
Semester:	Second Semester	Course Number:	250473
Exam:	Final Exam	Instructor Name:	Feras Awad
Exam Date:	11/06/2017	Student Name:	
Exam Date: Exam Day:	11/06/2017 Sunday	Student Name: University ID:	

1. Evaluate $\frac{d^{100}}{dx^{100}} [x^2 e^{-x}]$ when x = 100.

2. Find the exact value of $\int_{0}^{\pi/2} \sqrt{\tan\theta} \, d\theta$

3. Find the norm of the function $f(x) = xe^{-x/2}$ on $(0,\infty)$. 4. Evaluate $\lim_{x\to 0} \left[\frac{1}{x}J_1(x)\right]$. [2]

5. Show that
$$\sqrt{\frac{\pi x}{2}} J_{-\frac{1}{2}}(x) = \cos x$$
.

$$\left[\text{ Hint: } \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = \cos x \text{ and } \Gamma\left(n + \frac{1}{2}\right) = \frac{(2n)!}{4^n n!} \sqrt{\pi} \right]$$

7. Expand in a Legendre series, the function f(x) given by the graph.

[Hint: $P_0(x) = 1, P_1(x) = x, P_2(x) = \frac{1}{2} (3x^2 - 1), P_3(x) = \frac{1}{2} (5x^3 - 3x)$]

8. By a method similar to that we used to show that the P_n 's are an orthogonal set of functions on (-1, 1), show that the solutions of

$$y_n'' = -n^2 y_n$$
; $y(-\pi) = y(\pi) = 0$,

are an orthogonal set on $(-\pi,\pi)$.