Lecture Notes for Calculus 101 Chapter 1 : Limits & Continuity

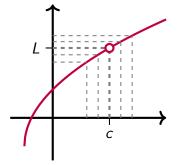
Feras Awad

Philadelphia University

The Idea of Limits

If f(x) becomes close to a single L as x approaches c (from either sides), we say that "the limit of f(x) as x approaches to c is L."

$$\lim_{x\to c} f(x) = L$$



NOTE: The value of f(c) has no effect on the value of $\lim_{x\to c} f(x)$.

Two Sided Limits

- * The limit of f(x) as x approaches "c" from left is denoted by $\lim_{x\to c^-} f(x)$
- * The limit of f(x) as x approaches "c" from right is denoted by $\lim_{x\to c^+} f(x)$

Theorem 1

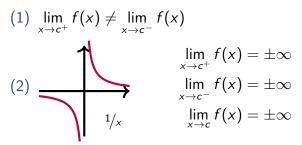
Let $L \in \mathbb{R}$. We say that $\lim_{x \to c} f(x)$ exists if and only if

$$\lim_{x\to c^+} f(x) = \lim_{x\to c^-} f(x) = L$$

NOTE: $x \rightarrow c^+$ means x > c

 $x \rightarrow c^-$ means x < c

When the Limit Does Not Exist (d.n.e)?



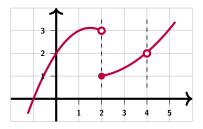
(3) f(x) oscillating between two fixed values as x approaches to "c".
 For example,

Limits from Function Graph

Example 1

From the given graph of f(x), evaluate:

- (1) f(2) = 1(2) $\lim_{x \to 2^+} f(x) = 1$ (3) $\lim_{x \to 2^-} f(x) = 3$ (4) $\lim_{x \to 2^-} f(x) = 4 m \pi$
- (4) $\lim_{x \to 2} f(x)$ **d.n.e**
- (5) f(4) undefined



(6) $\lim_{x \to 4^+} f(x) = 2$ (7) $\lim_{x \to 4^-} f(x) = 2$ (8) $\lim_{x \to 4} f(x) = 2$

Laws of Limits

Theorem 2

Suppose that $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist, then: (1) $\lim_{x \to a} \left(f \stackrel{\bullet}{+} g \right) = \lim_{x \to a} f \stackrel{\bullet}{+} \lim_{x \to a} g$ (2) $\lim_{x \to a} \left(\frac{f}{g} \right) = \frac{\lim_{x \to a} f}{\lim_{x \to a} g}$; $\lim_{x \to a} g \neq 0$ (3) $\lim_{k \to a} k = k$; k is constant (4) $\lim_{x \to a} kf(x) = k \lim_{x \to a} f(x)$; k is constant (5) $\lim_{x \to a} (f(x))^n = \left(\lim_{x \to a} f(x)\right)^n$; *n* is positive integer (6) $\lim_{x \to a} \sqrt[n]{f} = \sqrt[n]{\lim_{x \to a} f} \quad ; \quad \lim_{x \to a} f(x) \ge 0 \text{ if } n \text{ is even}$

Laws of Limits

Example 2

Let
$$\lim_{x \to 1/2} f(x) = 2$$
 and $\lim_{x \to 1/2} g(x) = -1$, then
 $\lim_{x \to 1/2} \left(\frac{f(x) - 2g(x)}{f(x)} \right)^2 = \left(\frac{2 - 2(-1)}{2} \right)^2 = 2^2 = 4$

Let
$$f(x) = \frac{1}{x}$$
 and $g(x) = \frac{-1}{x}$. Note that $\lim_{x \to 0} \frac{1}{x}$ d.n.e and $\lim_{x \to 0} \frac{-1}{x}$
d.n.e, but:
 $\lim_{x \to 0} (f+g) = \lim_{x \to 0} \left(\frac{1}{x} + \frac{-1}{x}\right) = \lim_{x \to 0} 0 = 0$

If f(x) is almost any function (except piecewise) and $a \in \text{dom}(f)$, then $\lim_{x \to a} f(x) = f(a)$.

Example 4

Evaluate the following limits.

(1)
$$\lim_{x \to -2} x = -2$$

(2) $\lim_{x \to 1} (x^2 + 3x - 1)^3 = 27$
(3) $\lim_{x \to 3} \frac{x+1}{x^2 - 4} = \frac{4}{5}$
(4) $\lim_{x \to -2} \frac{x+1}{x^2 - 4} = \frac{-1}{0}$ d.n.e

(5)
$$\lim_{x \to -9} \sqrt[3]{x+1} = \sqrt[3]{-8} = -2$$

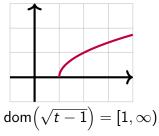
(6) $\lim_{x \to -1} \sqrt[3]{x+1} = \sqrt[3]{0} = 0$
(7) $\lim_{x \to 3} \sqrt{x+1} = 2$
(8) $\lim_{x \to -3} \sqrt{x+1} = \sqrt{-2}$ d.n.e

Let
$$f(x) = \begin{cases} x+2 & : x \le -2 \\ x^2-5 & : -2 < x < 3. \text{ Find:} \\ \sqrt{x+13} & : x > 3 \end{cases}$$

(1) $\lim_{x \to 1} f(x) = \lim_{x \to 1} (x^2-5) = -4$
(2) $\lim_{x \to -2} f(x) \text{ d.n.e} \qquad \lim_{x \to -2^-} f(x) = \lim_{x \to -2} (x+2) = 0$
 $\lim_{x \to -2^+} f(x) = \lim_{x \to -2} (x^2-5) = -1$
(3) $\lim_{x \to 3} f(x) = 4$
 $\lim_{x \to 3^+} f(x) = \lim_{x \to 3} (x^2-5) = 4$
 $\lim_{x \to 3^+} f(x) = \lim_{x \to 3} \sqrt{x+13} = 4$

Evaluate
$$\lim_{t \to 1} \sqrt{t-1} = \sqrt{0} = 0$$
. Wait !!

$$\lim_{t \to 1^+} \sqrt{t-1} = 0$$
$$\lim_{t \to 1^-} \sqrt{t-1} \text{ d.n.e}$$
$$\therefore \lim_{t \to 1} \sqrt{t-1} \text{ d.n.e}$$



Example 7

Evaluate $\lim_{t \to 1^{+}} \sqrt{t^2 - 2t + 1} = \sqrt{0} = 0$. Wait !! $\lim_{t \to 1^{+}} |t - 1| = \lim_{t \to 1} (t - 1)$ = 0 $\lim_{t \to 1^{-}} |t - 1| = \lim_{t \to 1} (1 - t)$ = 0 $\therefore \lim_{t \to 1} |t - 1| = 0$ $\int \lim_{t \to 1^{+}} |t - 1| = 0$

Example 8

Evaluate $\lim_{x \to -3} \frac{x^2 - 9}{x + 3} = \frac{0}{0} \begin{cases} \text{Direct substitution fails.} \\ \text{The limit may exist or not.} \end{cases}$

$$\lim_{x \to -3} \frac{x^2 - 9}{x + 3} = \lim_{x \to -3} \frac{(x - 3)(x + 3)}{x + 3}$$
 (By Factoring)
$$= \lim_{x \to -3} (x - 3)$$

$$= -6$$

NOTE: $a^2 - b^2 = (a - b)(a + b)$

Evaluate
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 4x + 4} = \frac{0}{0}$$

= $\lim_{x \to 2} \frac{(x+3)(x-2)}{(x-2)(x-2)}$
= $\lim_{x \to 2} \frac{x+3}{x-2}$
= $\frac{5}{0}$ d.n.e

Evaluate
$$\lim_{t \to 2} \frac{t^3 - 8}{t - 2} = \frac{0}{0}$$

= $\lim_{t \to 2} \frac{(t - 2)(t^2 + 2t + 4)}{t - 2}$
= $\lim_{t \to 2} (t^2 + 2t + 4)$
= 12

NOTE:
$$a^3 - b^3 = (a - b) (a^2 + ab + b^2)$$

 $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$

Evaluate
$$\lim_{x \to 4} \frac{x-4}{\sqrt{x}-2} = \frac{0}{0}$$
 (By Conjugate)
$$= \lim_{x \to 4} \frac{x-4}{\sqrt{x}-2} \cdot \frac{\sqrt{x}+2}{\sqrt{x}+2}$$
$$= \lim_{x \to 4} \frac{(x-4)(\sqrt{x}+2)}{x-4}$$
$$= \lim_{x \to 4} (\sqrt{x}+2) = 4$$
NOTE: $a^2 - b^2 = (a-b)(a+b)$
$$x - 4 = (\sqrt{x}-2)(\sqrt{x}+2)$$

Evaluate
$$\lim_{x \to 0} \frac{\sqrt{x+4}-2}{x} = \frac{0}{0}$$

= $\lim_{x \to 0} \frac{\sqrt{x+4}-2}{x} \cdot \frac{\sqrt{x+4}+2}{\sqrt{x+4}+2}$
= $\lim_{x \to 0} \frac{(x+4)-4}{x(\sqrt{x+4}+2)}$
= $\lim_{x \to 0} \frac{1}{\sqrt{x+4}+2}$
= $\frac{1}{4}$

Evaluate
$$\lim_{x \to -8} \frac{\sqrt[3]{x+2}}{x+8} = \frac{0}{0}$$

 $\begin{cases} By substituting $y = \sqrt[3]{x} \Rightarrow x = y^3 \\ If x \to -8, \text{ then } y \to \sqrt[3]{-8} = -2 \end{cases}$
 $= \lim_{y \to -2} \frac{y+2}{y^3+8}$
 $= \lim_{y \to -2} \frac{y+2}{(y+2)(y^2-2y+4)}$
 $= \lim_{y \to -2} \frac{1}{y^2-2y+4}$
 $= \frac{1}{12}$$

Example 14
Evaluate
$$\lim_{x \to 5} \frac{\frac{1}{x} - \frac{1}{5}}{x - 5} = \frac{0}{0}$$

$$= \lim_{x \to 5} \frac{\left(\frac{5 - x}{5x}\right)}{x - 5}$$

$$= \lim_{x \to 5} \left(\frac{5 - x}{5x} \cdot \frac{1}{x - 5}\right)$$

$$= \lim_{x \to 5} \frac{-1}{5x}$$

$$= \frac{-1}{25}$$

Evaluate
$$\lim_{x \to 3} \frac{|x-3|}{x^2 - 9} = \frac{0}{0}$$

 $|x-3| = \begin{cases} x-3 & :x \ge 3\\ -(x-3) & :x < 3 \end{cases}$
 $\frac{|x-3|}{x^2 - 9} = \begin{cases} \frac{x-3}{x^2 - 9} & :x > 3\\ \frac{-(x-3)}{x^2 - 9} & :x < 3 \end{cases}$
 $= \begin{cases} \frac{1}{x+3} & :x > 3\\ \frac{-1}{x+3} & :x < 3 \end{cases}$

$$\lim_{x \to 3^+} \frac{|x-3|}{x^2 - 9} = \lim_{x \to 3^+} \frac{1}{x+3} = \frac{1}{6}$$
$$\lim_{x \to 3^-} \frac{|x-3|}{x^2 - 9} = \lim_{x \to 3^-} \frac{-1}{x+3} = \frac{-1}{6}$$
$$\therefore \lim_{x \to 3} \frac{|x-3|}{x^2 - 9} \quad \mathbf{d.n.e}$$

Example 16 If $\lim_{x \to 1} \frac{f(x)}{x-1} = 5$, find $\lim_{x \to 1} (2f(x) + x^2)$ Since $5 \in \mathbb{R}$ = $2 \lim_{x \to 1} f(x) + \lim_{x \to 1} x^2$ then the limit exists = 2(0) + 1Since $\lim_{x \to 1} (x-1) = 0$ = 1 then $\lim_{x \to 1} f(x) = 0$

Evaluate
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{\sqrt[3]{x} - 1} = \frac{0}{0}$$

 $\lim_{x \to 1} \frac{\sqrt{x} - 1}{\sqrt[3]{x} - 1} = \lim_{x \to 1} \frac{\sqrt{x} - 1}{\sqrt[3]{x} - 1} \cdot \frac{\sqrt{x} + 1}{\sqrt{x} + 1} \cdot \frac{(\sqrt[3]{x})^2 + \sqrt[3]{x} + 1}{(\sqrt[3]{x})^2 + \sqrt[3]{x} + 1}$
 $= \lim_{x \to 1} \frac{x - 1}{x - 1} \cdot \frac{(\sqrt[3]{x})^2 + \sqrt[3]{x} + 1}{\sqrt{x} + 1}$
 $= \lim_{x \to 1} \frac{(\sqrt[3]{x})^2 + \sqrt[3]{x} + 1}{\sqrt{x} + 1} = \frac{3}{2}$
NOTE: $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$
 $x - 1 = (\sqrt[3]{x} - 1) ((\sqrt[3]{x})^2 + \sqrt[3]{x} + 1)$

Let
$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & : x \neq 2\\ 5 & : x = 2 \end{cases}$$
. Find:
(1) $f(2) = 5$
(2) $\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4$

Infinite Limits and Vertical Asymptotes

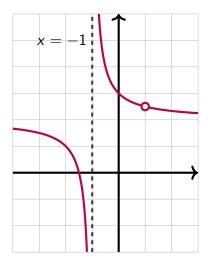
The figure shows the graph of

$$f(x) = \frac{2x^2 + x - 3}{x^2 - 1}.$$

$$\lim_{x \to -1^-} f(x) = -\infty$$

$$\lim_{x \to -1^+} f(x) = \infty$$

$$\therefore x = -1 \text{ is Vertical}$$
Asymptote



Infinite Limits and Vertical Asymptotes

Definition 1

We say that x = a is vertical asymptote of f(x) if one of the following holds: $\lim_{x \to a^+} f(x) = \pm \infty$

or
$$\lim_{x \to a^{-}} f(x) = \pm \infty$$

or $\lim_{x \to a^{-}} f(x) = \pm \infty$

or
$$\lim_{x \to a} f(x) = \pm \infty$$

Find the vertical asymptotes for
$$f(x) = \frac{x-1}{x^2-1}$$
.
Since $f(x) = \frac{x-1}{(x-1)(x+1)} = \frac{1}{x+1}$, then $x = -1$ is **V.A.**

Infinite Limits and Vertical Asymptotes

Example 20

Find the vertical asymptotes for $f(x) = \frac{2x^3 - 5x + 7}{x^2 + 4x - 5}$.

denominator =
$$0 \Rightarrow x^2 + 4x - 5 = 0$$

 $\Rightarrow (x - 1)(x + 5) = 0$
 $\Rightarrow x = 1, x = -5$

Now, substitute x = 1 in the numerator $\Rightarrow 4 \neq 0$ x = -5 in the numerator $\Rightarrow -218 \neq 0$ $\therefore x = 1$ and x = -5 are **V.As**

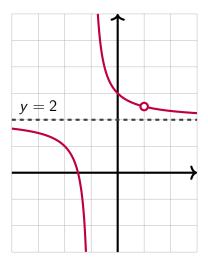
The figure shows the graph of

$$f(x) = \frac{2x^2 + x - 3}{x^2 - 1}.$$

$$\lim_{x \to \infty} f(x) = 2$$

$$\lim_{x \to -\infty} f(x) = 2$$

$$\therefore y = 2 \text{ is Horizontal}$$
Asymptote



Definition 2

We say that y = b is a horizontal asymptote of f(x) if either $\lim_{x\to\infty} f(x) = b$ or $\lim_{x\to-\infty} f(x) = b$.

NOTE:

(1)
$$\lim_{x \to \pm \infty} (a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0) = \lim_{x \to \pm \infty} a_n x^n$$

(2)
$$\lim_{x \to \pm \infty} k = k \text{ where } k \text{ is constant}$$

(3)
$$\lim_{x \to \pm \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} = \begin{cases} \pm \infty & : n > m \\ 0 & : n < m \\ a_n / b_m & : n = m \end{cases}$$

Example 21

Find the horizontal asymptotes for $f(x) = \frac{x-1}{x^2-1}$.

$$\lim_{x \to \infty} \frac{x-1}{x^2-1} = \lim_{x \to \infty} \frac{x}{x^2} \qquad \qquad \lim_{x \to -\infty} \frac{x-1}{x^2-1} = \lim_{x \to -\infty} \frac{x}{x^2}$$
$$= \lim_{x \to -\infty} \frac{1}{x} \qquad \qquad = \lim_{x \to -\infty} \frac{1}{x}$$
$$= \frac{1}{\infty} \qquad \qquad = 0$$
$$= 0$$
$$\therefore y = 0 \text{ is H.A} \qquad \qquad \therefore y = 0 \text{ is H.A}$$

Example 22

Find the horizontal asymptotes for $f(x) = \frac{2x^3 - 5x + 7}{4x - 3x^2}$.

$$\lim_{x \to \infty} \frac{2x^3 - 5x + 7}{4x - 3x^2} = \lim_{x \to \infty} \frac{2x^3}{-3x^2} = \lim_{x \to \infty} \frac{-2x}{3} = -\infty$$

$$\therefore \text{ There is NO H.A}$$

$$\lim_{x \to -\infty} \frac{2x^3 - 5x + 7}{4x - 3x^2} = \lim_{x \to -\infty} \frac{2x^3}{-3x^2} = \lim_{x \to -\infty} \frac{-2x}{3} = \infty$$

:. There is **NO H.A**

٠

Example 23

Find the horizontal asymptotes for $f(x) = \frac{(2x^2-1)(x+1)}{-4x^3+2x^2-x+1}$.

$$\lim_{x \to \infty} \frac{(2x^2 - 1)(x + 1)}{-4x^3 + 2x^2 - x + 1} = \lim_{x \to \infty} \frac{(2x^2)(x)}{-4x^3} = \lim_{x \to \infty} \frac{2x^3}{-4x^3} = -\frac{1}{2}$$

$$\therefore y = -\frac{1}{2} \text{ is } \mathbf{H.A}$$

$$\lim_{x \to -\infty} \frac{(2x^2 - 1)(x + 1)}{-4x^3 + 2x^2 - x + 1} = \lim_{x \to -\infty} \frac{(2x^2)(x)}{-4x^3} = \lim_{x \to -\infty} \frac{2x^3}{-4x^3} = -\frac{1}{2}$$

$$\therefore y = -\frac{1}{2} \text{ is } \mathbf{H.A}$$

Find the horizontal asymptotes for
$$f(x) = rac{\sqrt{4x^2+1}}{3x-1}$$
.

$$\lim_{x \to \infty} \frac{\sqrt{4x^2 + 1}}{3x - 1} = \lim_{x \to \infty} \frac{\sqrt{4x^2}}{3x} = \lim_{x \to \infty} \frac{2|x|}{3x} = \lim_{x \to \infty} \frac{2x}{3x} = \frac{2}{3}$$

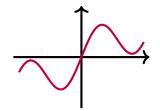
$$\therefore y = \frac{2}{3} \text{ is } \mathbf{H.A}$$

$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 + 1}}{3x - 1} = \lim_{x \to -\infty} \frac{\sqrt{4x^2}}{3x} = \lim_{x \to -\infty} \frac{2|x|}{3x} = \lim_{x \to -\infty} \frac{-2x}{3x} = \frac{-2}{3}$$

$$\therefore \ y = \frac{-2}{3} \text{ is } \mathbf{H.A}$$

Continuous Functions

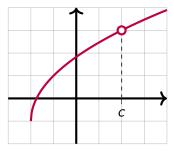
Simply, a function is continuous if it does not have any "breaks" or "holes" in its graph.



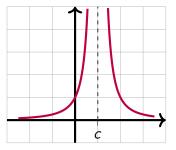
Definition 3

A function f(x) is continuous at x = c if all the following three conditions are hold: (1) f(c) is defined (2) $\lim_{x \to c} f(x)$ exists (3) $f(c) = \lim_{x \to c} f(x)$

When f(x) is discontinuous at x = c?

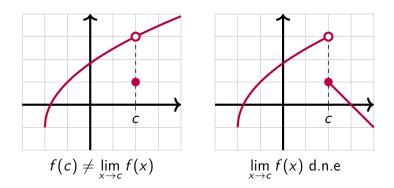


f(c) is not defined



f(c) is not defined $\lim_{x \to c} f(x)$ d.n.e

When f(x) is discontinuous at x = c?



When f(x) is discontinuous at x = c?

Determine whether
$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & : x \neq 2 \\ 4 & : x = 2 \end{cases}$$
 is continuous at $x = 2$?

$$\checkmark f(2) = 4$$

$$\checkmark \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4$$

$$\checkmark f(2) = \lim_{x \to 2} f(x)$$

$$\therefore f(x) \text{ is continuous at } x = 2$$

Continuity on Intervals

- * f(x) is continuous on (a, b) or $(-\infty, \infty)$ if f is continuous at each x = c in the interval.
- * f(x) is continuous on [a, b] if
 ▶ f is continuous on (a, b)
 ▶ f is continuous at x = a from right. lim_{x→a⁺} f(x) = f(a)
 ▶ f is continuous at x = b from left. lim_{x→b⁻} f(x) = f(b)

NOTE: In general, every function (except piecewise) is continuous on its domain.

Continuity on Intervals

Example 26

Let
$$f(x) = \frac{x^2 - 9}{x^2 - 5x + 6}$$
. Where f is discontinuous?

f is discontinuous
$$\Leftrightarrow x^2 - 5x + 6 = 0$$

 $\Leftrightarrow (x - 2)(x - 3) = 0 \Leftrightarrow x = 2, x = 3$

Example 27 Let $g(x) = \sqrt{4 - x^2}$. Where g is continuous? g is continuous $\Leftrightarrow 4 - x^2 \ge 0$ $\Leftrightarrow x^2 \le 4 \Leftrightarrow |x| \le 2 \Leftrightarrow -2 \le x \le 2$

Continuity on Intervals

Example 28

Let
$$g(x) = \begin{cases} x^2 + 1 & : x \leq -2 \\ 2x + 9 & : -2 < x < 5. \end{cases}$$
 Where g is discontinuous?
 $\sqrt{x+4} & : x \geq 5 \end{cases}$

$$-\infty \xleftarrow{x^2+1}_{-2} \xrightarrow{2x+9}_{5} \sqrt{x+4} \xrightarrow{x^2+1}_{-2} \infty$$

$$x = -2 \quad g(-2) = 5 \quad \lim_{x \to -2^-} g(x) = 5 \quad \lim_{x \to -2^+} g(x) = 5 \quad \checkmark$$

$$x = 5 \quad g(5) = 3 \quad \lim_{x \to 5^-} g(x) = 19 \quad \lim_{x \to 5^+} g(x) = 3 \quad \checkmark$$

$$\therefore \quad g(x) \text{ is discontinuous at } x = 5.$$

٠

Continuity on Intervals

Example 29

Find c such that
$$f(x) = \begin{cases} \frac{x^2 - 9}{x + 3} & : x \neq -3 \\ c^3 & : x = -3 \end{cases}$$
 is continuous every where.

f continuous every where $\Rightarrow f$ continuous at x = -3

$$\Rightarrow f(-3) = \lim_{x \to -3} f(x)$$
$$\Rightarrow c^3 = \lim_{x \to -3} \frac{x^2 - 9}{x + 3}$$
$$\Rightarrow c^3 = -6 \Rightarrow c = \sqrt[3]{-6} = -\sqrt[3]{6}$$

Some Theorems

Theorem 3

Suppose f and g are continuous at x = c, then: (1) f + g is continuous at x = c. (2) $\frac{f}{g}$ is continuous at x = c if $g(c) \neq 0$.

Theorem 4

If g is continuous at x = c, and f is continuous at g(c), then $f \circ g$ is continuous at x = c.

Some Theorems

Theorem 5

The absolute value of continuous function is continuous.

For example, $g(x) = |3x^2 - 4x + 1|$ is continuous on \mathbb{R} .

Theorem 6

If $\lim_{x \to c} g(x) = L$ (exists) and f(x) is continuous at x = L, then $\lim_{x \to c} f(g(x)) = f\left(\lim_{x \to c} g(x)\right)$

Example 30

$$\lim_{x \to 2} \log_2 \left(\frac{x^2 - 4}{x - 2} \right) = \log_2 \left(\lim_{x \to 2} \frac{x^2 - 4}{x - 2} \right) = \log_2 4 = 2$$

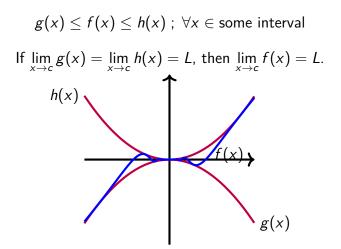
Exercises

Exercise 1

(1) Find k such that
$$f(x) = \begin{cases} 7x - 1 & : x \le 1 \\ kx^2 & : x > 1 \end{cases}$$
 is continuous on \mathbb{R} .
(2) Find the interval of continuity of $g(x) = \frac{\ln(4 - x^2)}{x}$
(3) Find the vertical and horizontal asymptotes of $f(x) = \frac{5x^3 + 6x}{x^3 - 4x}$

Squeeze Theorem

Let f, g and h be functions such that



Squeeze Theorem

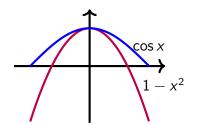
Example 31

Given that f(x) satisfies the inequality

$$1-x^2 \leq f(x) \leq \cos x$$
; for all $x \in (-\pi/2, \pi/2)$

Find $\lim_{x\to 0} f(x)$

Since $\lim_{x \to 0} (1 - x^2) = 1$ $\lim_{x \to 0} \cos x = 1$ then by Squeezing Theorem $\lim_{x \to 0} f(x) = 1$



Squeeze Theorem

Example 32

Use Squeeze Theorem to evaluate $\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right)$.

$$-1 \le \sin x \le 1 \Rightarrow -1 \le \sin\left(\frac{1}{x}\right) \le 1$$
$$\Rightarrow -x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2$$
Since $\lim_{x \to 0} (-x^2) = \lim_{x \to 0} (x^2) = 0$, then $\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0$

Theorem 7

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
$$\lim_{x \to 0} \frac{x}{\sin x} = 1$$
$$\lim_{x \to 0} \frac{\sin(ax)}{bx} = \frac{a}{b}$$

$$\lim_{x \to 0} \frac{\tan x}{x} = 1 \qquad \qquad \lim_{x \to 0} \frac{\sin x}{\tan x} = 1$$
$$\lim_{x \to 0} \frac{x}{\tan x} = 1 \qquad \qquad \lim_{x \to 0} \frac{\tan x}{\sin x} = 1$$
$$\lim_{x \to 0} \frac{\tan(ax)}{bx} = \frac{a}{b} \qquad \qquad \lim_{x \to 0} \frac{\sin(ax)}{\tan(bx)} = \frac{a}{b}$$

Example 33
$$\lim_{x \to 0} \frac{\tan(2x)}{\sin(3x)} = \frac{2}{3}$$

Example 34

$$\lim_{x \to 0} \frac{\sin^2(2x)}{3x^2} = \frac{1}{3} \lim_{x \to 0} \frac{\sin^2(2x)}{x^2} = \frac{1}{3} \lim_{x \to 0} \left(\frac{\sin(2x)}{x}\right)^2 = \frac{2^2}{3} = \frac{4}{3}.$$

Example 35

$$\lim_{x \to 0} \frac{\tan(2x^2)}{3x} = \lim_{x \to 0} \frac{\tan(2x^2)}{3x} \cdot \frac{x}{x} = \lim_{x \to 0} x \cdot \frac{\tan(2x^2)}{3x^2}$$
$$= \left(\lim_{x \to 0} x\right) \left(\lim_{x \to 0} \frac{\tan(2x^2)}{3x^2}\right) \begin{cases} \text{Let } y = x^2\\ \text{If } x \to 0 \text{ then } y \to 0 \end{cases}$$
$$= \left(\lim_{x \to 0} x\right) \left(\lim_{y \to 0} \frac{\tan(2y)}{3y}\right) = 0 \times \frac{2}{3} = 0$$

Example 36

$$\lim_{x \to 5} \frac{x-5}{\sin(x^2-25)} = \lim_{x \to 5} \frac{x-5}{\sin(x^2-25)} \cdot \frac{x+5}{x+5}$$
$$= \lim_{x \to 5} \frac{1}{x+5} \cdot \frac{x^2-25}{\sin(x^2-25)}$$
$$= \left(\lim_{x \to 5} \frac{1}{x+5}\right) \underbrace{\left(\lim_{x \to 5} \frac{x^2-25}{\sin(x^2-25)}\right)}_{\substack{\text{Let } y = x^2-25\\\text{If } x \to 5, \text{ then } y \to 0}}$$
$$= \left(\lim_{x \to 5} \frac{1}{x+5}\right) \left(\lim_{y \to 0} \frac{y}{\sin(y)}\right) = \frac{1}{10} \times 1 = \frac{1}{10}$$

Example 37

$$\lim_{x \to 0} \frac{\sin(3x) + \tan(4x)}{x^2 + 2x} = \lim_{x \to 0} \frac{\frac{\sin(3x)}{x} + \frac{\tan(4x)}{x}}{x + 2} = \frac{3 + 4}{0 + 2} = \frac{7}{2}$$

Example 38

 $\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{1 - \cos x}{x} \cdot \frac{1 + \cos x}{1 + \cos x} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x(1 + \cos x)}$ $= \lim_{x \to 0} \frac{\sin^2 x}{x(1 + \cos x)} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{\sin x}{1 + \cos x}$ $= \left(\lim_{x \to 0} \frac{\sin x}{x}\right) \left(\lim_{x \to 0} \frac{\sin x}{1 + \cos x}\right) = 1 \times \frac{0}{1 + 1} = 0$

Example 39

Find a nonzero constant k that makes the function $f(x) = \begin{cases} \frac{\sin(kx)}{x} & : x < 0\\ 3x + 2k^2 & : x \ge 0 \end{cases}$ continuous at x = 0.

$$f \text{ continuous at } x = 0 \Leftrightarrow \lim_{x \to 0^{+}} f(x) \text{ exists}$$

$$\Leftrightarrow \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{-}} f(x)$$

$$\Leftrightarrow \lim_{x \to 0^{+}} \left(3x + 2k^{2}\right) = \lim_{x \to 0^{-}} \frac{\sin(kx)}{x}$$

$$\Leftrightarrow 2k^{2} = k \Leftrightarrow 2k^{2} - k = 0$$

$$\Leftrightarrow k(2k - 1) = 0 \Leftrightarrow k = 0 \And \text{ or } k = \frac{1}{2} \checkmark$$

Exercises

Exercise 2

Exercises

Exercise 3

Evaluate the following limits (1) $\lim_{x \to 1} \frac{\sin(x-1)}{x^2 + 2x - 3}$ (2) $\lim_{\theta \to 0} \frac{2\sin^2 \theta}{\theta \cos \theta}$ (3) $\lim_{x \to 0} \frac{2 - \cos(3x) - \cos(4x)}{x}$