Course: Calculus (3)

Chapter: [12]
 VECTOR-VALUED FUNCTIONS

Section: [12.1]
INTRODUCTION TO VECTOR-VALUED FUNCTIONS

IN THIS CHAPTER

\checkmark We will consider functions whose values are vectors.

> Functions that associate vectors with real numbers.
\checkmark In this section we will discuss more general parametric curves, and we will show how vector notation can be used to express parametric equations in a more compact form.

VECTOR-VALUED FUNCTIONS

A function of the form

$$
\begin{aligned}
\mathbf{r}(t) & =f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k} \\
& =\langle f(t), g(t), h(t)\rangle
\end{aligned}
$$

is a vector-valued function, where the component functions f, g and h are real-valued functions of the parameter t.

PARAMETRIC CURVES IN 3 -SPACE

Example The parametric equations

$$
\begin{aligned}
& x=1-t \\
& y=3 t \\
& z=2 t
\end{aligned}
$$

represent a line in 3 -space that passes through the point $(1,0,0)$ and is parallel to the vector $\langle-1,3,2\rangle$.

$$
\begin{aligned}
\mathbf{r}(t) & =(1-t) \mathbf{i}+3 t \mathbf{j}+2 t \mathbf{k} \\
& =\langle 1-t, 3 t, 2 t\rangle
\end{aligned}
$$

PARAMETRIC CURVES IN 3 -SPACE

Example Describe the parametric curve represented by the equations

$$
\begin{aligned}
& x=10 \cos t \\
& y=10 \sin t \\
& z=t \\
& \\
& \begin{aligned}
\mathbf{r}(t) & =10 \cos t \mathbf{i}+10 \sin t \mathbf{j}+t \mathbf{k} \\
& =\langle 10 \cos t, 10 \sin t, t\rangle
\end{aligned}
\end{aligned}
$$

Circular HELIX

VECTOR-VALUED FUNCTIONS

The domain of a vector-valued function $\mathbf{r}(t)$ is the set of allowable values for t.

NOTE Usual reasons to restrict a domain:

1. Avoid division by 0 .
2. Avoid even roots of negative numbers.
3. Avoid logarithms of negative numbers or 0 .

VECTOR-VALUED FUNCTIONS

Example Find the natural domain of $\quad \mathbf{r}(t)=\ln |t-1| \mathbf{i}+e^{t} \mathbf{j}+\sqrt{t} \mathbf{k}$

$$
\begin{array}{ll}
x(t)=\ln |t-1| & \square \text { Domain }=\mathbb{R}-\{1\} \\
y(t)=e^{t} & \square \text { Domain }=\mathbb{R} \\
z(t)=\sqrt{t} & \square \text { Domain }=[0, \infty)
\end{array}
$$

\therefore The domain of $\mathbf{r}(t)$ is the intersection of these sets.

Course: Calculus (3)

Chapter: [12]
VECTOR-VALUED FUNCTIONS

Section: [12.2]
CALCULUS OF VECTOR-VALUED FUNCTIONS

LIMITS AND CONTINUITY

- Many techniques and definitions used in the calculus of realvalued functions can be applied to vector-valued functions.
- For instance, you can add and subtract vector-valued functions, multiply a vector-valued function by a scalar, take the limit of a vector-valued function, differentiate a vectorvalued function, and so on.

LIMITS AND CONTINUITY

$$
\begin{aligned}
\mathbf{r}_{1}(t)+\mathbf{r}_{2}(t) & =\left[f_{1}(t) \mathbf{i}+g_{1}(t) \mathbf{j}\right]+\left[f_{2}(t) \mathbf{i}+g_{2}(t) \mathbf{j}\right] \\
& =\left[f_{1}(t)+f_{2}(t)\right] \mathbf{i}+\left[g_{1}(t)+g_{2}(t)\right] \mathbf{j} . \\
\mathbf{r}_{1}(t)-\mathbf{r}_{2}(t) & =\left[f_{1}(t) \mathbf{i}+g_{1}(t) \mathbf{j}\right]-\left[f_{2}(t) \mathbf{i}+g_{2}(t) \mathbf{j}\right] \\
& =\left[f_{1}(t)-f_{2}(t)\right] \mathbf{i}+\left[g_{1}(t)-g_{2}(t)\right] \mathbf{j} .
\end{aligned}
$$

$$
\begin{aligned}
c \mathbf{r}(t) & =c\left[f_{1}(t) \mathbf{i}+g_{1}(t) \mathbf{j}\right] \\
& =c f_{1}(t) \mathbf{i}+c g_{1}(t) \mathbf{j} .
\end{aligned}
$$

$$
\begin{aligned}
\frac{\mathbf{r}(t)}{c} & =\frac{\left[f_{1}(t) \mathbf{i}+g_{1}(t) \mathbf{j}\right]}{c}, \quad c \neq 0 \\
& =\frac{f_{1}(t)}{c} \mathbf{i}+\frac{g_{1}(t)}{c} \mathbf{j} .
\end{aligned}
$$

LIMITS AND CONTINUITY

If \mathbf{r} is a vector-valued function such that $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, then

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left[\lim _{t \rightarrow a} f(t)\right] \mathbf{i}+\left[\lim _{t \rightarrow a} g(t)\right] \mathbf{j}+\left[\lim _{t \rightarrow a} h(t)\right] \mathbf{k}
$$

provided f, g, and h have limits as $t \rightarrow a$.
Example If $\mathbf{r}(t)=\frac{3}{t^{2}} \mathbf{i}+\frac{\ln t}{t^{2}-1} \mathbf{j}+\cos (\pi t) \mathbf{k}$, find $\lim _{t \rightarrow 1} \mathbf{r}(t)$.

$$
\begin{aligned}
\lim _{t \rightarrow 1} \mathbf{r}(t) & =\left\langle 3, \frac{1}{2},-1\right\rangle \\
& =3 \mathbf{i}+\frac{1}{2} \mathbf{j}-\mathbf{k}
\end{aligned}
$$

$$
\lim _{t \rightarrow 1} \frac{3}{t^{2}}=3
$$

$$
\lim _{t \rightarrow 1} \frac{\ln t}{t^{2}-1}=\lim _{t \rightarrow 1} \frac{1 / t}{2 t}=\frac{1}{2}
$$

$$
\lim _{t \rightarrow 1} \cos (\pi t)=-1
$$

LIMITS AND CONTINUITY

Example If $\mathbf{r}(t)=\frac{2 t^{2}-1}{t^{2}+t} \mathbf{i}+\sin \left(\frac{1}{t}\right) \mathbf{j}+t e^{-t} \mathbf{k}$, find $\lim _{t \rightarrow \infty} \mathbf{r}(t)$.

$$
\lim _{t \rightarrow \infty} \mathbf{r}(t)=\langle 2,0,0\rangle=2 \mathbf{i}
$$

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \frac{2 t^{2}-1}{t^{2}+t}=2 \\
& \lim _{t \rightarrow \infty} \sin \left(\frac{1}{t}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
\lim _{t \rightarrow \infty} t e^{-t} & =0 \cdot \infty \\
& =\lim _{t \rightarrow \infty} \frac{t}{e^{t}}=\lim _{t \rightarrow \infty} \frac{1}{e^{t}}=0
\end{aligned}
$$

LIMITS AND CONTINUITY

A vector-valued function \mathbf{r} is continuous at the point given by $t=a$ when the limit of $\mathbf{r}(t)$ exists as $t \rightarrow a$ and

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{r}(a)
$$

A vector-valued function \mathbf{r} is continuous on an interval I when it is continuous at every point in the interval.

Example The vector-valued function $\mathbf{r}(t)=t^{2} \mathbf{i}+\frac{1}{t^{2}-1} \mathbf{j}+t \mathbf{k}$, is discontinuous at $t= \pm 1$.

It is continuous for all $t \in \mathbb{R}-\{-1,1\}$

DERIVATIVES

- The derivative of a vector-valued function is defined by a limit like that for the derivative of a real-valued function.

$$
\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

- The derivative of $\mathbf{r}(t)$ can be expressed as

$$
\frac{d}{d t}[\mathbf{r}(t)], \quad \frac{d \mathbf{r}}{d t}, \quad \mathbf{r}^{\prime}(t), \quad \mathbf{r}^{\prime}
$$

- Keep in mind that $\mathbf{r}(t)$ is a vector, not a number, and hence has a magnitude and a direction for each value of t, except if $\mathbf{r}(t)=\mathbf{0}$.

DERIVATIVES

Suppose that C is the graph of a vector-valued function $\mathbf{r}(t)$ and that $\mathbf{r}^{\prime}(t)$ exists and is nonzero for a given value of t.

If the vector $\mathbf{r}^{\prime}(t)$ is positioned with its initial point at the terminal point of the radius vector $\mathbf{r}(t)$, then $\mathbf{r}^{\prime}(t)$ is tangent to C and points in the direction of increasing parameter.

DERIVATIVES

If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where f, g, and h are differentiable functions of t, then

$$
\mathbf{r}^{\prime}(t)=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}+h^{\prime}(t) \mathbf{k} .
$$

Example For the vector-valued function

$$
\mathbf{r}(t)=t \mathbf{i}+\left(t^{2}+2\right) \mathbf{j}, \text { find } \mathbf{r}^{\prime}(1) .
$$

$$
\mathbf{r}^{\prime}(t)=\mathbf{i}+2 t \mathbf{j}
$$

$$
\mathbf{r}^{\prime}(1)=\mathbf{i}+2 \mathbf{j}
$$

DERIVATIVES

Example For the vector-valued function $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+2 t \mathbf{k}$, find:
(1) $\mathbf{r}^{\prime}(t)$ $\mathbf{r}^{\prime}(t)=-\sin t \mathbf{i}+\cos t \mathbf{j}+2 \mathbf{k}$
(2) $\mathbf{r}^{\prime \prime}(t)$ $\mathbf{r}^{\prime \prime}(t)=-\cos t \mathbf{i}-\sin t \mathbf{j}$
(3) $\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t) \quad \mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)=\sin t \cos t-\cos t \sin t=0$
(4) $\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)$
$\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -\sin t & \cos t & 2 \\ -\cos t & -\sin t & 0\end{array}\right|=2 \sin t \mathbf{i}-2 \cos t \mathbf{j}+\mathbf{k}$

1. $\frac{d}{d t}[c \mathbf{r}(t)]=c \mathbf{r}^{\prime}(t)$
2. $\frac{d}{d t}[\mathbf{r}(t) \pm \mathbf{u}(t)]=\mathbf{r}^{\prime}(t) \pm \mathbf{u}^{\prime}(t)$
3. $\frac{d}{d t}[w(t) \mathbf{r}(t)]=w(t) \mathbf{r}^{\prime}(t)+w^{\prime}(t) \mathbf{r}(t)$
4. $\frac{d}{d t}[\mathbf{r}(t) \cdot \mathbf{u}(t)]=\mathbf{r}(t) \cdot \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \cdot \mathbf{u}(t)$
5. $\frac{d}{d t}[\mathbf{r}(t) \times \mathbf{u}(t)]=\mathbf{r}(t) \times \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \times \mathbf{u}(t)$
6. $\frac{d}{d t}[\mathbf{r}(w(t))]=\mathbf{r}^{\prime}(w(t)) w^{\prime}(t)$
7. If $\mathbf{r}(t) \cdot \mathbf{r}(t)=c$, then $\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0$.

DERIVATIVE RULES

Example For $\mathbf{u}(t)=\frac{1}{t} \mathbf{i}-\mathbf{j}+\ln t \mathbf{k}$ and $\mathbf{v}(t)=t^{2} \mathbf{i}-2 t \mathbf{j}+\mathbf{k}$ then:
(1) $\frac{d}{d t}[\mathbf{u}(t) \cdot \mathbf{v}(t)]=\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t)+\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)$

$$
=\left\langle\frac{1}{t},-1, \ln t\right\rangle \cdot\langle 2 t,-2,0\rangle+\left\langle\frac{-1}{t^{2}}, 0, \frac{1}{t}\right\rangle \cdot\left\langle t^{2},-2 t, 1\right\rangle
$$

$$
=(2+2+0)+\left(-1+0+\frac{1}{t}\right)
$$

$$
=3+\frac{1}{t}
$$

DERIVATIVE RULES

Example For $\mathbf{u}(t)=\frac{1}{t} \mathbf{i}-\mathbf{j}+\ln t \mathbf{k}$ and $\mathbf{v}(t)=t^{2} \mathbf{i}-2 t \mathbf{j}+\mathbf{k}$ then:
(2) $\frac{d}{d t}\left[\mathbf{v}(t) \times \mathbf{v}^{\prime}(t)\right]=\mathbf{v}(t) \times \mathbf{v}^{\prime \prime}(t)+\mathbf{v}^{\prime}(t) \times \mathbf{v}^{\prime}(t)$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
t^{2} & -2 t & 1 \\
2 & 0 & 0
\end{array}\right|+\mathbf{0} \\
& =2 \mathbf{j}+4 t \mathbf{k}
\end{aligned}
$$

TANGENT LINES TO GRAPHS OF VECTOR-VALUED FUNCTIONS

Example Find parametric equations of the tangent line to the circular helix $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$ at the point where $t=\pi$.

$$
t=\pi
$$

POINT

$$
(\cos \pi, \sin \pi, \pi)=(-1,0, \pi)
$$

TANGENT VECTOR
$\mathbf{r}^{\prime}(t)=-\sin t \mathbf{i}+\cos t \mathbf{j}+\mathbf{k}$
$\mathbf{r}^{\prime}(\pi)=-\mathbf{j}+\mathbf{k}$
\therefore The parametric equations of the tangent line are

$$
\begin{aligned}
& x=-1 \\
& y=-t \\
& z=\pi+t
\end{aligned}
$$

DEFINITE AND INDEFINITE INTEGRALS OF VECTOR-VALUED FUNCTIONS

In general, we have

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left(\int_{a}^{b} x(t) d t\right) \mathbf{i}+\left(\int_{a}^{b} y(t) d t\right) \mathbf{j}+\left(\int_{a}^{b} z(t) d t\right) \mathbf{k}
$$

Example Let $\mathbf{r}(t)=t^{2} \mathbf{i}+e^{t} \mathbf{j}-2 \cos (\pi t) \mathbf{k}$. Then

$$
\begin{aligned}
\int_{0}^{1} \mathbf{r}(t) d t & =\left(\int_{0}^{1} t^{2} d t\right) \mathbf{i}+\left(\int_{0}^{1} e^{t} d t\right) \mathbf{j}-\left(\int_{0}^{1} 2 \cos \pi t d t\right) \mathbf{k} \\
& \left.\left.\left.=\frac{t^{3}}{3}\right]_{0}^{1} \mathbf{i}+e^{t}\right]_{0}^{1} \mathbf{j}-\frac{2}{\pi} \sin \pi t\right]_{0}^{1} \mathbf{k}=\frac{1}{3} \mathbf{i}+(e-1) \mathbf{j}
\end{aligned}
$$

DEFINITE AND INDEFINITE INTEGRALS OF VECTOR-VALUED FUNCTIONS

$$
\text { Example } \begin{aligned}
\int\left(2 t \mathbf{i}+3 t^{2} \mathbf{j}\right) d t & =\left(\int 2 t d t\right) \mathbf{i}+\left(\int 3 t^{2} d t\right) \mathbf{j} \\
& =\left(t^{2}+C_{1}\right) \mathbf{i}+\left(t^{3}+C_{2}\right) \mathbf{j} \\
& =\left(t^{2} \mathbf{i}+t^{3} \mathbf{j}\right)+\left(C_{1} \mathbf{i}+C_{2} \mathbf{j}\right)=\left(t^{2} \mathbf{i}+t^{3} \mathbf{j}\right)+\mathbf{C}
\end{aligned}
$$

DEFINITE AND INDEFINITE INTEGRALS OF VECTOR-VALUED FUNCTIONS

Example Find $\mathbf{r}(t)$ given that $\mathbf{r}^{\prime}(t)=\langle 3,2 t\rangle$ and $\mathbf{r}(1)=\langle 2,5\rangle$.

$$
\begin{aligned}
\mathbf{r}(t)=\int \mathbf{r}^{\prime}(t) d t=\int\langle 3,2 t\rangle d t=\left\langle 3 t, t^{2}\right\rangle+\mathbf{C} \\
\text { But } \left.\quad \begin{array}{rlrl}
\mathbf{r}(1) & =\langle 2,5\rangle \\
\langle 3,1\rangle+\mathbf{C} & =\langle 2,5\rangle & \text { So } \quad \begin{array}{rl}
\mathbf{r}(t) & =\left\langle 3 t, t^{2}\right\rangle+\langle-1,4\rangle \\
\mathbf{C} & =\langle-1,4\rangle
\end{array} & \mathbf{r}(t)
\end{array}\right)=\left\langle 3 t-1, t^{2}+4\right\rangle
\end{aligned}
$$

Course: Calculus (3)

Chapter: [12]
 VECTOR-VALUED FUNCTIONS

Section: [12.3]
CHANGE OF PARAMETER; ARC LENGTH

SMOOTH PARAMETRIZATIONS

- We will say that a curve represented by $\mathbf{r}(t)$ is smoothly parametrized by $\mathbf{r}(t)$, or that $\mathbf{r}(t)$ is a smooth function of t if:
$\checkmark \mathbf{r}^{\prime}(t)$ is continuous, and
$\checkmark \mathbf{r}^{\prime}(t) \neq \mathbf{0}$ for any allowable value of t.
- Geometrically, this means that a smoothly parametrized curve can have no abrupt (مفاجئ) changes in direction as the parameter increases.

SMOOTH PARAMETRIZATIONS

Example Determine whether the following vector-valued functions are smooth.
(1) $\mathbf{r}(t)=a \cos t \mathbf{i}+a \sin t \mathbf{j}+c t \mathbf{k} \quad a>0, c>0$
$\mathbf{r}^{\prime}(t)=-a \sin t \mathbf{i}+a \cos t \mathbf{j}+c \mathbf{k}$
\checkmark The components are continuous functions, and
\checkmark there is no value of t for which all three of them are zero.
\checkmark So $\mathbf{r}(t)$ is a smooth function.

SMOOTH PARAMETRIZATIONS

Example Determine whether the following vector-valued functions are smooth.
(2) $\mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}$
$\mathbf{r}^{\prime}(t)=2 t \mathbf{i}+3 t^{2} \mathbf{j}$
\checkmark The components are continuous functions, and
\checkmark they are both equal to zero if $t=0$.
\checkmark So, $\mathbf{r}(t)$ is NOT a smooth function.

ARC LENGTH FROM THE VECTOR VIEWPOINT

If C is the graph of a smooth vector-valued function $\mathbf{r}(t)$, then its arc length ℓ from $t=a$ to $t=b$ is

$$
\ell=\int_{a}^{b}\left\|\frac{d \mathbf{r}}{d t}\right\| d t=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

Example Find the arc length of that portion of the circular helix $\mathbf{r}(t)=$ $\langle\cos t, \sin t, t\rangle$ from $t=0$ to $t=\pi$.

ARC LENGTH FROM THE VECTOR VIEWPOINT

$$
\ell=\int_{a}^{b}\left\|\frac{d \mathbf{r}}{d t}\right\| d t=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

Example Find the arc length of that portion of the circular helix $\mathbf{r}(t)$

$$
=\langle\cos t, \sin t, t\rangle \text { from } t=0 \text { to } t=\pi .
$$

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\langle-\sin t, \cos t, 1\rangle \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{(-\sin t)^{2}+\cos ^{2} t+1} \\
& =\sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
\ell & =\int_{0}^{\pi}\left\|\mathbf{r}^{\prime}(t)\right\| d t \\
& =\int_{0}^{\pi} \sqrt{2} d t \\
& =\sqrt{2} \pi
\end{aligned}
$$

Course: Calculus (3)

Chapter: [12]
 VECTOR-VALUED FUNCTIONS

Section: [12.4]
UNIT TANGENT, NORMAL, AND BINORMAL VECTORS

UNIT TANGENT VECTORS

- Recall that if C is the graph of a smooth vector-valued function $\mathbf{r}(t)$, then the vector $\mathbf{r}^{\prime}(t)$ is:
\checkmark nonzero, tangent to C, and
\checkmark points in the direction of increasing parameter.
- Thus, by normalizing $\mathbf{r}^{\prime}(t)$ we obtain a unit vector

that is tangent to C and points in the direction of increasing parameter.
- We call $\mathbf{T}(t)$ the unit tangent vector to C at t.

UNIT TANGENT VECTORS

Example Find the unit tangent vector to the graph of $\mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}$ at the point where $t=2$.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =2 t \mathbf{i}+3 t^{2} \mathbf{j} \\
\mathbf{r}^{\prime}(2) & =4 \mathbf{i}+12 \mathbf{j} \\
\mathbf{T}(2) & =\frac{\mathbf{r}^{\prime}(2)}{\left\|\mathbf{r}^{\prime}(2)\right\|} \\
& =\frac{4 \mathbf{i}+12 \mathbf{j}}{\sqrt{160}}=\frac{1}{\sqrt{10}} \mathbf{i}+\frac{3}{\sqrt{10}} \mathbf{j}
\end{aligned}
$$

UNIT NORMAL VECTORS

- Recall if $\|\mathbf{r}(t)\|=c$, then $\mathbf{r}(t)$ and $\mathbf{r}^{\prime}(t)$ are orthogonal vectors.
- $\mathbf{T}(t)$ has constant norm 1, so $\mathbf{T}(t)$ and $\mathrm{T}^{\prime}(t)$ are orthogonal vectors.
- This implies that $\mathbf{T}^{\prime}(t)$ is perpendicular to the tangent line to C at t, so we say that $\mathrm{T}^{\prime}(t)$ is normal to C at t.

UNIT NORMAL VECTORS

- It follows that if $\mathbf{T}^{\prime}(t) \neq 0$, and if we normalize $\mathbf{T}^{\prime}(t)$, then we obtain a unit vector

$$
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|}
$$

that is normal to C and points in the same direction as $\mathrm{T}^{\prime}(t)$.

UNIT NORMAL VECTORS

- We call $\mathbf{N}(t)$ the principal unit normal vector to C at t, or more simply, the unit normal vector.
- Observe that the unit normal vector is defined only at points where $\mathbf{T}^{\prime}(t) \neq \mathbf{0}$. Unless stated otherwise, we will assume that this condition is satisfied.
- In particular, this excludes straight lines.

UNIT NORMAL VECTORS

Example Find $\mathbf{T}(t)$ and $\mathbf{N}(t)$ for the circular helix $\mathbf{r}(t)=\langle 3 \cos t, 3 \sin t, 4 t\rangle$.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\langle-3 \sin t, 3 \cos t, 4\rangle \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{9 \sin ^{2} t+9 \cos ^{2} t+16}=5 \\
\mathbf{T}(t) & =\frac{\langle-3 \sin t, 3 \cos t, 4\rangle}{5}=\left(\frac{-3}{5} \sin t, \frac{3}{5} \cos t, \frac{4}{5}\right\rangle
\end{aligned}
$$

UNIT NORMAL VECTORS

Example Find $\mathbf{T}(t)$ and $\mathbf{N}(t)$ for the circular helix $\mathbf{r}(t)=\langle 3 \cos t, 3 \sin t, 4 t\rangle$.

$$
\begin{aligned}
\mathbf{T}(t) & =\frac{\langle-3 \sin t, 3 \cos t, 4\rangle}{5}=\left\langle\frac{-3}{5} \sin t, \frac{3}{5} \cos t, \frac{4}{5}\right\rangle \\
\mathbf{T}^{\prime}(t) & =\left\langle\frac{-3}{5} \cos t, \frac{-3}{5} \sin t, 0\right\rangle \\
\left\|\mathbf{T}^{\prime}(t)\right\| & =\sqrt{\frac{9}{25} \cos ^{2} t+\frac{9}{25} \sin ^{2} t+0}=\frac{3}{5}
\end{aligned}
$$

UNIT NORMAL VECTORS

Example Find $\mathbf{T}(t)$ and $\mathbf{N}(t)$ for the circular helix $\mathbf{r}(t)=\langle 3 \cos t, 3 \sin t, 4 t\rangle$.

$$
\begin{aligned}
\mathrm{T}^{\prime}(t) & =\left\langle\frac{-3}{5} \cos t, \frac{-3}{5} \sin t, 0\right\rangle \\
\left\|\mathbf{T}^{\prime}(t)\right\| & =\sqrt{\frac{9}{25} \cos ^{2} t+\frac{9}{25} \sin ^{2} t+0}=\frac{3}{5} \\
\mathbf{N}(t) & =\frac{\left(\frac{-3}{5} \cos t, \frac{-3}{5} \sin t, 0\right\rangle}{\frac{3}{5}}=\langle-\cos t,-\sin t, 0\rangle
\end{aligned}
$$

UNIT NORMAL VECTORS

Example Find $\mathbf{T}(t)$ and $\mathbf{N}(t)$ for $\mathbf{r}(t)=\left\langle\frac{1}{2} t^{2}, \frac{1}{3} t^{3}\right\rangle$ at $t=1$.

$$
\begin{aligned}
& \mathbf{r}^{\prime}(t)=\left\langle t, t^{2}\right\rangle \quad \mathbf{r}^{\prime}(1)=\langle 1,1\rangle \\
& \mathbf{T}(1)=\frac{\mathbf{r}^{\prime}(1)}{\left\|\mathbf{r}^{\prime}(1)\right\|}=\frac{\langle 1,1\rangle}{\sqrt{2}}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle \\
& \mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}=\frac{1}{\sqrt{t^{2}+t^{4}}}\left\langle t, t^{2}\right\rangle=\left(t^{2}+t^{4}\right)^{-1 / 2}\left\langle t, t^{2}\right\rangle \\
& \mathbf{T}^{\prime}(t)=\left(t^{2}+t^{4}\right)^{-1 / 2}\langle 1,2 t\rangle-\frac{1}{2}\left(2 t+4 t^{3}\right)\left(t^{2}+t^{4}\right)^{-3 / 2}\left\langle t, t^{2}\right\rangle
\end{aligned}
$$

UNIT NORMAL VECTORS

Example Find $\mathbf{T}(t)$ and $\mathbf{N}(t)$ for $\mathbf{r}(t)=\left\langle\frac{1}{2} t^{2}, \frac{1}{3} t^{3}\right\rangle$ at $t=1$.

$$
\begin{aligned}
& \mathrm{T}^{\prime}(t)=\left(t^{2}+t^{4}\right)^{-1 / 2}\langle 1,2 t\rangle-\frac{1}{2}\left(2 t+4 t^{3}\right)\left(t^{2}+t^{4}\right)^{-3 / 2}\left\langle t, t^{2}\right\rangle \\
& \mathrm{T}^{\prime}(1)=\frac{\langle 1,2\rangle}{\sqrt{2}}-\frac{3\langle 1,1\rangle}{2 \sqrt{2}}=\left\langle\frac{-1}{2 \sqrt{2}}, \frac{1}{2 \sqrt{2}}\right\rangle \\
& \left\|\mathrm{T}^{\prime}(1)\right\|=\sqrt{\left(\frac{-1}{2 \sqrt{2}}\right)^{2}+\left(\frac{1}{2 \sqrt{2}}\right)^{2}}=\frac{1}{2} \\
& \mathbf{N}(1)=\frac{\mathrm{T}^{\prime}(1)}{\left\|\mathrm{T}^{\prime}(1)\right\|}=\left\langle\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle
\end{aligned}
$$

BINORMAL VECTORS IN 3 -SPACE

If C is the graph of a vector-valued function $\mathbf{r}(t)$ in 3 -space, then we define the binormal vector to C at t to be

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)
$$

- It follows from properties of the cross product that $\mathbf{B}(t)$ is orthogonal to both $\mathbf{T}(t)$ and $\mathbf{N}(t)$ and is oriented relative to $\mathbf{T}(t)$ and $\mathbf{N}(t)$ by the right-hand rule.
- $\mathbf{B}(t)$ is unit vector !!.

$$
\|\mathbf{B}(t)\|=\|\mathbf{T}(t) \times \mathbf{N}(t)\|=\|\mathbf{T}(t)\|\|\mathbf{N}(t)\| \sin \frac{\pi}{2}=1
$$

BINORMAL VECTORS IN 3 -SPACE

Note that $\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)$ are three mutually orthogonal unit vectors.

$$
\begin{aligned}
\mathbf{B}(t) & =\mathbf{T}(t) \times \mathbf{N}(t) \\
\mathbf{N}(t) & =\mathbf{B}(t) \times \mathbf{T}(t) \\
\mathbf{T}(t) & =\mathbf{N}(t) \times \mathbf{B}(t)
\end{aligned}
$$

The binormal $\mathbf{B}(t)$ can be expressed directly in terms of $\mathbf{r}(t)$ as:

$$
\mathbf{B}(t)=\frac{\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)}{\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|}
$$

BINORMAL VECTORS IN 3 -SPACE

Example Find $\mathbf{B}(t)$ for the circular helix $\mathbf{r}(t)=\langle 3 \cos t, 3 \sin t, 4 t\rangle$.

$$
\left.\left.\begin{array}{rl}
\mathbf{T}(t) & =\left\langle\frac{-3}{5} \sin t, \frac{3}{5} \cos t, \frac{4}{5}\right.
\end{array} \right\rvert\, \quad \mathbf{N}(t)=\langle-\cos t,-\sin t, 0\rangle\right)
$$

BINORMAL VECTORS IN 3 -SPACE

Example Find $\mathbf{B}(t)$ for the circular helix $\mathbf{r}(t)=\langle 3 \cos t, 3 \sin t, 4 t\rangle$.

$$
\begin{aligned}
& \mathbf{r}^{\prime}(t)=\langle-3 \sin t, 3 \cos t, 4\rangle \\
& \mathbf{r}^{\prime \prime}(t)=\langle-3 \cos t,-3 \sin t, 0\rangle \\
& \begin{aligned}
\mathbf{B}(t)=\frac{\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)}{\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|} & =\frac{\langle 12 \sin t,-12 \cos t, 9\rangle}{25} \\
& =\left\langle\frac{4}{5} \sin t, \frac{-4}{5} \cos t, \frac{3}{5}\right\rangle
\end{aligned}
\end{aligned}
$$

Course: Calculus (3)

Chapter: [12]
VECTOR-VALUED FUNCTIONS

Section: [12.5]
CURVATURE

DEFINITION OF CURVATURE

- We will consider the problem of obtaining a numerical measure of how sharply a curve bends.
- For instance, in the figure, the curve bends more sharply at P than at Q and you can say that the curvature is greater at P than at Q .

DEFINITION OF CURVATURE

You can calculate curvature by calculating the magnitude of the rate of change of the unit tangent vector T with respect to the arc length s.

- If C is a straight line (no bend), then the direction of T remains constant.
- If C bends slightly, then T undergoes a gradual change of direction.
- If C bends sharply, then T undergoes a rapid change of direction.

DEFINITION OF CURVATURE

If $\mathbf{r}(t)$ is a smooth vector-valued function, then for each value of t at which $\mathbf{T}^{\prime}(t)$ and $\mathbf{r}^{\prime \prime}(t)$ exist, the curvature κ can be expressed as

$$
\kappa(t)=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|}=\frac{\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}}
$$

Example Show that the curvature of a circle of radius R is $\kappa=\frac{1}{R}$.
(1) $\kappa(t)=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|}$

DEFINITION OF CURVATURE

Example Show that the curvature of a circle of radius R is $\kappa=\frac{1}{R}$.
(1) $\kappa(t)=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|} \quad \mathbf{r}(t)=R \cos t \mathbf{i}+R \sin t \mathbf{j} \quad t \in[0,2 \pi]$

$$
\mathbf{r}^{\prime}(t)=-R \sin t \mathbf{i}+R \cos t \mathbf{j}
$$

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}=\frac{\langle-R \sin t, R \cos t\rangle}{\sqrt{(-R \sin t)^{2}+(R \cos t)^{2}}}=\langle-\sin t, \cos t\rangle
$$

$$
\mathbf{T}^{\prime}(t)=\langle-\cos t,-\sin t\rangle
$$

$$
\kappa(t)=\frac{\sqrt{(-\cos t)^{2}+(-\sin t)^{2}}}{\sqrt{(-R \sin t)^{2}+(R \cos t)^{2}}}=\frac{1}{R}
$$

DEFINITION OF CURVATURE

Example Show that the curvature of a circle of radius R is $\kappa=\frac{1}{R}$.
(2) $\kappa(t)=\frac{\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}} \quad \mathbf{r}(t)=R \cos t \mathbf{i}+R \sin t \mathbf{j}+0 \mathbf{k} \quad t \in[0,2 \pi]$
$\mathbf{r}^{\prime}(t)=-R \sin t \mathbf{i}+R \cos t \mathbf{j}+0 \mathbf{k}$
$\mathbf{r}^{\prime \prime}(t)=-R \cos t \mathbf{i}-R \sin t \mathbf{j}+0 \mathbf{k}$

$$
\begin{aligned}
& \mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-R \sin t & R \cos t & 0 \\
-R \cos t & -R \sin t & 0
\end{array}\right|=R^{2} \mathbf{k} \\
&\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|=R^{2} \\
&\left\|\mathbf{r}^{\prime}(t)\right\|=R
\end{aligned} \quad \kappa(t)=\frac{R^{2}}{R^{3}}=\frac{1}{R} .
$$

