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NOTATION AND TERMINOLOGY

The notation for a function of two or more variables is similar to that
for a function of a single variable.

𝑧 = 𝑓 𝑥, 𝑦

2 Variables

𝑤 = 𝑓 𝑥, 𝑦, 𝑧

3 Variables

Function of two variables

Function of three variables



NOTATION AND TERMINOLOGY

𝑥1, 𝑦1

𝑥2, 𝑦2

𝑥3, 𝑦3

𝑥0, 𝑦0

𝑧1

𝑧2

𝑧1

𝑧2

Definition of a Function of Two Variables

✓ Let 𝐷 be a set of ordered pairs of real
numbers.

✓ If to each ordered pair 𝑥, 𝑦 in 𝐷 there
corresponds a unique real number 𝑓 𝑥, 𝑦
then 𝑓 is a function of 𝑥 and 𝑦.

𝐷

✓ The set 𝐷 is the domain of 𝑓 and the
corresponding set of values for 𝑓(𝑥, 𝑦) is
the range of 𝑓.

Domain Range

✓ 𝑥 and 𝑦 are called the independent variables
and 𝑧 is called the dependent variable.



NOTATION AND TERMINOLOGY

Example Find the domain of the function 𝑓 𝑥, 𝑦 =
𝑥2 + 𝑦2 − 9

𝑥

The function 𝑓 is defined for all points 𝑥, 𝑦
such that 𝑥 ≠ 0 and

𝑥2 + 𝑦2 − 9 ≥ 0 ⇒ 𝑥2 + 𝑦2 ≥ 9

So, the domain is the set of all points lying
on or outside the circle 𝑥2 + 𝑦2 = 9 except
those points on the 𝑦 −axis.



NOTATION AND TERMINOLOGY

Example Find the domain of the function 𝑓 𝑥, 𝑦 = 𝑦 + 1 + ln 𝑥2 − 𝑦

• Note that 𝑦 + 1 is defined only

when 𝑦 ≥ −1.

• Also, ln 𝑥2 − 𝑦 is defined only when

𝑥2 − 𝑦 > 0 and hence 𝑦 < 𝑥2.

• Thus, the natural domain of 𝑓 consists

of all points in the 𝑥𝑦 −plane for

which −1 ≤ 𝑦 < 𝑥2.



NOTATION AND TERMINOLOGY

Example Find the domain of the function 𝑓 𝑥, 𝑦, 𝑧 = 1 − 𝑥2 − 𝑦2 − 𝑧2

1 − 𝑥2 − 𝑦2 − 𝑧2 ≥ 0 ⇒ 𝑥2 + 𝑦2 + 𝑧2 ≤ 1

The natural domain of 𝑓 consists of all points on or
within the sphere whose center is 0,0,0 and radius 1.



LEVEL CURVES

The set of all points 𝑥, 𝑦, 𝑓 𝑥, 𝑦 in space, for 𝑥, 𝑦 in the domain of

𝑓, is called the graph of 𝑓.

The graph of 𝑓 is also called the surface 𝑧 = 𝑓 𝑥, 𝑦 .



The set of points in the plane where a
function 𝑓 𝑥, 𝑦 has a constant value
𝑓 𝑥, 𝑦 = 𝑐 is called a level curve of
𝑓.

LEVEL CURVES



LEVEL CURVES

The curve in space in which the plane

𝑧 = 𝑐 cuts a surface 𝑧 = 𝑓 𝑥, 𝑦 is

made up of the points that represent

the function value 𝑓 𝑥, 𝑦 = 𝑐. It is

called the contour curve 𝑓 𝑥, 𝑦 = 𝑐.



LEVEL CURVES

Example Sketch the contour plot of 𝑓 𝑥, 𝑦 = 4𝑥2 + 𝑦2 using level
curves of height 𝑘 = 0, 1, 2, 3, 4, 5.

𝑓 𝑥, 𝑦 = 𝑘 4𝑥2 + 𝑦2 = 𝑘

𝑘 = 0 4𝑥2 + 𝑦2 = 0 0,0

𝑘 > 0
𝑥2

Τ𝑘 4
+
𝑦2

𝑘
= 1

Which represents a family of

ellipses with 𝑥 −intercepts ±
𝑘

2

and 𝑦 −intercepts ± 𝑘.



LEVEL CURVES

Example Sketch the contour plot of 𝑓 𝑥, 𝑦 = 4𝑥2 + 𝑦2 using level
curves of height 𝑘 = 0, 1, 2, 3, 4, 5.

𝑓 𝑥, 𝑦 = 𝑘 4𝑥2 + 𝑦2 = 𝑘

𝑘 = 0 4𝑥2 + 𝑦2 = 0 0,0

𝑘 > 0
𝑥2

Τ𝑘 4
+
𝑦2

𝑘
= 1

Which represents a family of

ellipses with 𝑥 −intercepts ±
𝑘

2

and 𝑦 −intercepts ± 𝑘.
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LIMITS ALONG CURVES

• For a function of one variable there are two one-sided limits at a point
𝑥0, namely,

lim
𝑥→𝑥0

+
𝑓 𝑥 and lim

𝑥→𝑥0
−
𝑓 𝑥

reflecting the fact that there are only two directions from which 𝑥 can
approach 𝑥0, the right or the left.

• For functions of several variables the
situation is more complicated because
there are infinitely many different curves
along which one point can approach
another.



LIMITS ALONG CURVES

If 𝐶 is a smooth parametric curve in 2 −space

that is represented by the equations 𝑥 = 𝑥 𝑡

and 𝑦 = 𝑦 𝑡 , and if 𝑥0 = 𝑥 𝑡0 and 𝑦0 = 𝑦 𝑡0 ,

then

lim
𝑥,𝑦 → 𝑥0,𝑦0

along 𝑪

𝑓 𝑥, 𝑦 = lim
𝑡→𝑡0

𝑓 𝑥 𝑡 , 𝑦 𝑡



RELATIONSHIPS BETWEEN GENERAL LIMITS AND LIMITS ALONG
SMOOTH CURVES

• If 𝑓 𝑥, 𝑦 → 𝐿 as 𝑥, 𝑦 → 𝑥0, 𝑦0 , then 𝑓 𝑥, 𝑦 → 𝐿 as 𝑥, 𝑦 → 𝑥0, 𝑦0

along any smooth curve.

• If the limit of 𝑓(𝑥, 𝑦) fails to exist as 𝑥, 𝑦 → 𝑥0, 𝑦0 along some

smooth curve, or if 𝑓(𝑥, 𝑦) has different limits as 𝑥, 𝑦 → 𝑥0, 𝑦0 along

two different smooth curves, then the limit of 𝑓(𝑥, 𝑦) does not exist as

𝑥, 𝑦 → 𝑥0, 𝑦0 .



LIMITS ALONG CURVES

Example Evaluate lim
𝑥,𝑦 → 0,0

−
𝑥𝑦

𝑥2 + 𝑦2
along:

the 𝑥 −axis 𝑦 = 0

lim
𝑥,0 → 0,0

−
𝑥 × 0

𝑥2 + 02

=
0

0

= lim
𝑥→0

0

𝑥2
= 0

the 𝑦 −axis 𝑥 = 0

lim
0,𝑦 → 0,0

−
0 × 𝑦

02 + 𝑦2
= lim

𝑦→0

0

𝑦2
= 0



LIMITS ALONG CURVES

Example Evaluate lim
𝑥,𝑦 → 0,0

−
𝑥𝑦

𝑥2 + 𝑦2
along:

the line 𝑦 = 𝑥

lim
𝑥,𝑥 → 0,0

−
𝑥 × 𝑥

𝑥2 + 𝑥2

=
0

0

= lim
𝑥→0

−𝑥2

2𝑥2
=
−1

2

The parabola  𝑦 = 𝑥2

lim
𝑥,𝑥2 → 0,0

−
𝑥 × 𝑥2

𝑥2 + 𝑥4
= lim

𝑥→0

−𝑥3

𝑥2 1 + 𝑥2
= 0

Since we found two different smooth curves along which this limit had
different values then the limits does not exist



LIMITS ALONG CURVES

Example Show that the following limit does not exist.

lim
𝑥,𝑦 → 0,0

𝑥2 − 3𝑦2

𝑥2 + 2𝑦2
=
0

0

the 𝑥 −axis lim
𝑥,0 → 0,0

𝑥2 − 0

𝑥2 + 0
= 1

the 𝑦 −axis lim
0,𝑦 → 0,0

0 − 3𝑦2

0 + 2𝑦2
= −

3

2

The limit does
not exist



LIMITS ALONG CURVES

Example Show that the following limit does not exist.

lim
𝑥,𝑦 → 0,0

𝑥3𝑦

𝑥6 + 𝑦2
=
0

0

the 𝑥 −axis lim
𝑥,0 → 0,0

0

𝑥6 + 0
= 0

The curve 
𝑦 = 𝑥3

lim
𝑥,𝑥3 → 0,0

𝑥3 𝑥3

𝑥6 + 𝑥6
= lim

𝑥→0

𝑥6

2𝑥6
=
1

2

The limit does
not exist



LIMITS ALONG CURVES

Example Evaluate lim
𝑥,𝑦 → −1,2

𝑥𝑦

𝑥2 + 𝑦2
=

−1 2

−1 2 + 22
= −

2

5

Example Evaluate lim
𝑥,𝑦 → 1,4

5𝑥3𝑦2 + 9 = 5 13 42 + 9 = 89

Example Evaluate lim
𝑥,𝑦 → 0,0

1

𝑥2 + 𝑦2
=

1

0 + 0
= +∞ does not exist



Example Evaluate lim
𝑥,𝑦 → 0,0

𝑥4 − 𝑦4

𝑥2 + 𝑦2

LIMITS ALONG CURVES

=
0

0

lim
𝑥,𝑦 → 0,0

𝑥4 − 𝑦4

𝑥2 + 𝑦2
= lim

𝑥,𝑦 → 0,0

𝑥2 − 𝑦2 𝑥2 + 𝑦2

𝑥2 + 𝑦2

= lim
𝑥,𝑦 → 0,0

𝑥2 − 𝑦2

=0



Example Evaluate lim
𝑥,𝑦 → 0,0

𝑥2 + 𝑦2 ln 𝑥2 + 𝑦2 = 0 ⋅ ∞

LIMITS ALONG CURVES

• It is not evident whether this limit

exists because it is an

indeterminate form of type 0 ⋅ ∞.

• Although L'Hospital's rule cannot

be applied directly, we can find

this limit by converting to polar

coordinates.

𝑥 = 𝑟 cos 𝜃 𝑦 = 𝑟 sin 𝜃

𝑟2 = 𝑥2 + 𝑦2 tan 𝜃 = Τ𝑦 𝑥

Note

Since 𝑟 ≥ 0 then 𝑟 = 𝑥2 + 𝑦2,
so that 𝑟 → 0+ if and only if
𝑥, 𝑦 → 0,0



Example Evaluate lim
𝑥,𝑦 → 0,0

𝑥2 + 𝑦2 ln 𝑥2 + 𝑦2 = 0 ⋅ ∞

LIMITS ALONG CURVES

𝑥 = 𝑟 cos 𝜃 𝑦 = 𝑟 sin 𝜃

𝑟2 = 𝑥2 + 𝑦2 tan 𝜃 = Τ𝑦 𝑥

Note

Since 𝑟 ≥ 0 then 𝑟 = 𝑥2 + 𝑦2,
so that 𝑟 → 0+ if and only if
𝑥, 𝑦 → 0,0

= lim
𝑟→0+

𝑟2 ln 𝑟2

= lim
𝑟→0+

2 ln 𝑟

Τ1 𝑟2

= lim
𝑟→0+

Τ2 𝑟

Τ−1 𝑟3

= lim
𝑟→0+

−𝑟2 = 0



LIMITS ALONG CURVES

Example Evaluate the following limit by converting to polar coordinates.

lim
𝑥,𝑦 → 0,0

𝑥2𝑦2

𝑥2 + 𝑦2
=
0

0

lim
𝑥,𝑦 → 0,0

𝑥2𝑦2

𝑥2 + 𝑦2

𝑥 = 𝑟 cos 𝜃

𝑦 = 𝑟 sin 𝜃

𝑟2 = 𝑥2 + 𝑦2

Remember that 𝑟 → 0+ if and only if 𝑥, 𝑦 → 0,0 .

= lim
𝑟→0+

𝑟 cos 𝜃 2 𝑟 sin 𝜃 2

𝑟

= lim
𝑟→0+

𝑟3 cos2 𝜃 sin2 𝜃 = 0



LIMITS ALONG CURVES

Example Evaluate the following limit.

lim
𝑥,𝑦,𝑧 → 0,0,0

tan−1
1

𝑥2 + 𝑦2 + 𝑧2 = tan−1
1

0

= tan−1∞

=
𝜋

2



CONTINUITY

A function 𝑓 𝑥, 𝑦 is said to be continuous at 𝑥0, 𝑦0 if 𝑓 𝑥0, 𝑦0 is

defined and if

lim
𝑥,𝑦 → 𝑥0,𝑦0

𝑓 𝑥, 𝑦 = 𝑓 𝑥0, 𝑦0

In addition, if 𝑓 is continuous at every point in an open set 𝐷, then

we say that 𝑓 is continuous on 𝐷, and if 𝑓 is continuous at every point

in the 𝑥𝑦 −plane, then we say that 𝑓 is continuous everywhere.



CONTINUITY

NOTE We will regard 𝑓 as being continuous if the surface has no tears or
holes.



CONTINUITY

Example 𝑓 𝑥, 𝑦 =
𝑥3𝑦2

1 − 𝑥𝑦
is continuous except where 1 − 𝑥𝑦 = 0

𝑦 =
1

𝑥

Example Let 𝑓 𝑥, 𝑦 = ቐ
sin 𝑥2+𝑦2

𝑥2+𝑦2
: 𝑥, 𝑦 ≠ 0,0

1 : 𝑥, 𝑦 = 0,0

Show that 𝑓 is continuous at (0,0).



CONTINUITY

Example Let 𝑓 𝑥, 𝑦 = ቐ
sin 𝑥2+𝑦2

𝑥2+𝑦2
: 𝑥, 𝑦 ≠ 0,0

1 : 𝑥, 𝑦 = 0,0

Show that 𝑓 is continuous at (0,0).

𝑓 0,0 = 1 is defined

lim
𝑥,𝑦 → 0,0

𝑓 𝑥, 𝑦 = lim
𝑥,𝑦 → 0,0

sin 𝑥2 + 𝑦2

𝑥2 + 𝑦2

= lim
𝑟→0+

sin 𝑟2

𝑟2

= 1 = 𝑓 0,0



Chapter: [13]
PARTIAL DERIVATIVES

Section: [13.3]
PARTIAL DERIVATIVES

Course: Calculus (3)



PARTIAL DERIVATIVES OF FUNCTIONS OF TWO VARIABLES

• How will the value of a function be affected by a change in one of its

independent variables?

• The procedure used to determine the rate of change of a function

𝑓 𝑥, 𝑦 with respect to one of its several independent variables is

called partial differentiation, and the result is referred to as the

partial derivative of 𝑓 with respect to the chosen independent

variable.



PARTIAL DERIVATIVES OF FUNCTIONS OF TWO VARIABLES

Definition of Partial Derivatives of a Function of Two Variables



PARTIAL DERIVATIVES OF FUNCTIONS OF TWO VARIABLES

NOTE This previous definition indicates that if 𝑧 = 𝑓 𝑥, 𝑦 then:

✓ To find 𝑓𝑥 you consider 𝑦 constant and differentiate with respect

to 𝑥.

✓ Similarly, to find 𝑓𝑦 you consider 𝑥 constant and differentiate

with respect to 𝑦.



THE PARTIAL DERIVATIVE FUNCTIONS

Example Find 𝑓𝑥 𝑥, 𝑦 and 𝑓𝑦 𝑥, 𝑦 for 𝑓 𝑥, 𝑦 = 2𝑥3𝑦2 + 2𝑦 + 4𝑥 and

use those partial derivatives to compute 𝑓𝑥 1,3 and 𝑓𝑦 1,3 .

Keeping 𝑦 fixed (constant) and differentiating with respect to 𝑥 yields

𝑓𝑥 𝑥, 𝑦 =
𝑑

𝑑𝑥
2𝑥3𝑦2 + 2𝑦 + 4𝑥 = 6𝑥2𝑦2 + 4

and keeping 𝑥 fixed (constant) and differentiating with respect to 𝑦
yields

𝑓𝑦 𝑥, 𝑦 =
𝑑

𝑑𝑦
2𝑥3𝑦2 + 2𝑦 + 4𝑥 = 4𝑥3𝑦 + 2

Thus, 𝑓𝑥 1,3 = 6 12 32 + 4 = 58 𝑓𝑦 1,3 = 4 13 3 + 2 = 14



PARTIAL DERIVATIVE NOTATION



PARTIAL DERIVATIVE NOTATION

Example Find 
𝜕𝑧

𝜕𝑥
and 

𝜕𝑧

𝜕𝑦
if 𝑧 = 𝑥4 sin 𝑥𝑦3 .

𝜕𝑧

𝜕𝑥
=

𝜕

𝜕𝑥
𝑥4 sin 𝑥𝑦3

= 𝑥4
𝜕

𝜕𝑥
sin 𝑥𝑦3 + sin 𝑥𝑦3

𝜕

𝜕𝑥
𝑥4

= 𝑥4𝑦3 cos 𝑥𝑦3 + 4𝑥3 sin 𝑥𝑦3



PARTIAL DERIVATIVE NOTATION

Example Find 
𝜕𝑧

𝜕𝑥
and 

𝜕𝑧

𝜕𝑦
if 𝑧 = 𝑥4 sin 𝑥𝑦3 .

𝜕𝑧

𝜕𝑦
=

𝜕

𝜕𝑦
𝑥4 sin 𝑥𝑦3

= 𝑥4
𝜕

𝜕𝑦
sin 𝑥𝑦3 = 𝑥4 × 3𝑥𝑦2 cos 𝑥𝑦3

= 3𝑥5𝑦2 cos 𝑥𝑦3



PARTIAL DERIVATIVE NOTATION

Example Find 𝑓𝑥 1, ln 2 and 𝑓𝑦 1, ln 2 if 𝑓 𝑥, 𝑦 = 𝑦𝑒𝑥
2𝑦.

𝑓𝑥 =
𝜕

𝜕𝑥
𝑦𝑒𝑥

2𝑦

= 𝑦
𝜕

𝜕𝑥
𝑒𝑥

2𝑦 = 𝑦 × 2𝑥𝑦𝑒𝑥
2𝑦 = 2𝑥𝑦2𝑒𝑥

2𝑦

∴ 𝑓𝑥 1, ln 2 = 2 1 ln 2 2𝑒 12 ln 2

= 4 ln 2 2



PARTIAL DERIVATIVE NOTATION

Example Find 𝑓𝑥 1, ln 2 and 𝑓𝑦 1, ln 2 if 𝑓 𝑥, 𝑦 = 𝑦𝑒𝑥
2𝑦.

𝑓𝑦 =
𝜕

𝜕𝑦
𝑦𝑒𝑥

2𝑦 = 𝑦
𝜕

𝜕𝑦
𝑒𝑥

2𝑦 + 𝑒𝑥
2𝑦

𝜕

𝜕𝑦
𝑦

= 𝑦𝑥2𝑒𝑥
2𝑦 + 𝑒𝑥

2𝑦 = 𝑦𝑥2 + 1 𝑒𝑥
2𝑦

∴ 𝑓𝑦 1, ln 2 = 12 ln 2 + 1 𝑒 12 ln 2

= 2 ln 2 + 2



PARTIAL DERIVATIVES VIEWED AS SLOPES

The values of 𝑓𝑥 and 𝑓𝑦 at the point 𝑥0, 𝑦0, 𝑧0 denote the slopes of the

surface in the 𝑥 − and 𝑦 −directions, respectively.



PARTIAL DERIVATIVES VIEWED AS SLOPES

Example Let 𝑓 𝑥, 𝑦 = 𝑥2𝑦 + 5𝑦3.

a) Find the slope of the surface 𝑓 𝑥, 𝑦 in the 𝑥 −direction at the point
(1, −2).

∵ 𝑓𝑥 𝑥, 𝑦 = 2𝑥𝑦

Thus, the slope in the 𝑥 −direction is 𝑓𝑥 1,−2 = −4

b) Find the slope of the surface 𝑓 𝑥, 𝑦 in the 𝑦 −direction at the point
(1, −2).

∵ 𝑓𝑦 𝑥, 𝑦 = 𝑥2 + 15𝑦2

Thus, the slope in the 𝑦 −direction is 𝑓𝑦 1,−2 = 61



IMPLICIT PARTIAL DIFFERENTIATION

Example Find the slope of the sphere 𝑥2 + 𝑦2 + 𝑧2 = 1 in the 𝑦 −direction

at the point
2

3
,
1

3
,
2

3
.

𝜕

𝜕𝑦
𝑥2 + 𝑦2 + 𝑧2 =

𝜕

𝜕𝑦
1

2𝑦 + 2𝑧
𝜕𝑧

𝜕𝑦
= 0

𝜕𝑧

𝜕𝑦
= −

𝑦

𝑧

ቤ
𝜕𝑧

𝜕𝑦 2
3
,
1
3
,
2
3

= −
Τ1 3

Τ2 3

= −
1

2



PARTIAL DERIVATIVES OF FUNCTIONS WITH MORE THAN
TWO VARIABLES

• For a function 𝑤 = 𝑓 𝑥, 𝑦, 𝑧 of three variables, there are three partial
derivatives:

𝜕𝑤

𝜕𝑥
= 𝑓𝑥 ,

𝜕𝑤

𝜕𝑦
= 𝑓𝑦 ,

𝜕𝑤

𝜕𝑧
= 𝑓𝑧

• The partial derivative 𝑓𝑥 is calculated by holding 𝑦 and 𝑧 constant and

differentiating with respect to 𝑥.

• For 𝑓𝑦 the variables 𝑥 and 𝑧 are held constant,

• and for 𝑓𝑧 the variables 𝑥 and 𝑦 are held constant.



PARTIAL DERIVATIVES OF FUNCTIONS WITH MORE THAN
TWO VARIABLES

Example If 𝑓 𝑥, 𝑦, 𝑧 = 𝑥3𝑦2𝑧4 + 2𝑥𝑦 + 𝑧, then

𝑓𝑥 𝑥, 𝑦, 𝑧 = 3𝑥2𝑦2𝑧4 + 2𝑦

𝑓𝑦 𝑥, 𝑦, 𝑧 = 2𝑥3𝑦𝑧4 + 2𝑥

𝑓𝑧 𝑥, 𝑦, 𝑧 = 4𝑥3𝑦2𝑧3 + 1

Example If 𝑓 𝑥, 𝑦, 𝑧, 𝑤 =
𝑥+𝑦+𝑧

𝑤
, then

𝜕𝑓

𝜕𝑤
= −

𝑥 + 𝑦 + 𝑧

𝑤2



PARTIAL DERIVATIVES OF FUNCTIONS WITH MORE THAN
TWO VARIABLES

Example If 𝑤 =
𝑥2−𝑧2

𝑦2+𝑧2
, then

𝜕𝑤

𝜕𝑧
=

𝑦2 + 𝑧2 −2𝑧 − 𝑥2 − 𝑧2 2𝑧

𝑦2 + 𝑧2 2

=
−2𝑧 𝑥2 + 𝑦2

𝑦2 + 𝑧2 2



HIGHER-ORDER PARTIAL DERIVATIVES

✓ Suppose that 𝑓 is a function of two variables 𝑥
and 𝑦.

✓ Since the partial derivatives 𝑓𝑥 and 𝑓𝑦 are also

functions of 𝑥 and 𝑦, these functions may
themselves have partial derivatives.

✓ This gives rise to four possible second-order
partial derivatives of 𝑓 , which are defined by



HIGHER-ORDER PARTIAL DERIVATIVES

• The last two cases are called the mixed second-order

partial derivatives or the mixed second partials.

• Observe that the two notations for the mixed

second partials have opposite conventions for the

order of differentiation.

• Let 𝑓 be a function of two variables. If 𝑓𝑥𝑦 and 𝑓𝑦𝑥

are continuous on some open disk, then 𝑓𝑥𝑦 = 𝑓𝑦𝑥

on that disk.



HIGHER-ORDER PARTIAL DERIVATIVES

Example

Find the second-order partial derivatives of

𝑓 𝑥, 𝑦 = 𝑥2𝑦3 + 𝑥4𝑦

𝑓𝑥 𝑥, 𝑦 = 2𝑥𝑦3 + 4𝑥3𝑦

𝑓𝑥𝑥 =
𝜕2𝑓

𝜕𝑥2
=

𝜕

𝜕𝑥

𝜕𝑓

𝜕𝑥
=

𝜕

𝜕𝑥
2𝑥𝑦3 + 4𝑥3𝑦 = 2𝑦3 + 12𝑥2𝑦

𝑓𝑦 𝑥, 𝑦 = 3𝑥2𝑦2 + 𝑥4

𝑓𝑦𝑦 =
𝜕2𝑓

𝜕𝑦2
=

𝜕

𝜕𝑦

𝜕𝑓

𝜕𝑦
=

𝜕

𝜕𝑦
3𝑥2𝑦2 + 𝑥4 = 6𝑥2𝑦

𝑓𝑥𝑦 =
𝜕2𝑓

𝜕𝑦𝜕𝑥
=

𝜕

𝜕𝑦

𝜕𝑓

𝜕𝑥
=

𝜕

𝜕𝑦
2𝑥𝑦3 + 4𝑥3𝑦 = 6𝑥𝑦2 + 4𝑥3 = 𝑓𝑦𝑥



HIGHER-ORDER PARTIAL DERIVATIVES

Third-order, fourth-order, and higher-order partial derivatives can be
obtained by successive differentiation. Some possibilities are

Example Let 𝑓 𝑥, 𝑦 = 𝑦2𝑒𝑥 + 𝑦. Find 𝑓𝑥𝑦𝑦.



PARTIAL DERIVATIVES AND CONTINUITY

In contrast to the case of functions of a single variable, the existence of
partial derivatives for a multivariable function does not guarantee the
continuity of the function.

Example Let 𝑓 𝑥, 𝑦 = ቐ
−

𝑥𝑦

𝑥2 + 𝑦2
: 𝑥, 𝑦 ≠ 0,0

0 : 𝑥, 𝑦 = 0,0

We previously show that lim
𝑥,𝑦 → 0,0

−
𝑥𝑦

𝑥2 + 𝑦2
does not exist.

∴ 𝑓 𝑥, 𝑦 is discontinuous at 0,0 .



PARTIAL DERIVATIVES AND CONTINUITY

Example Let 𝑓 𝑥, 𝑦 = ቐ
−

𝑥𝑦

𝑥2 + 𝑦2
: 𝑥, 𝑦 ≠ 0,0

0 : 𝑥, 𝑦 = 0,0

∴ 𝑓 𝑥, 𝑦 is discontinuous at 0,0 .

We will have to use the definitions of the partial derivatives to determine
whether 𝑓 has partial derivatives at 0,0 , and if so, we find the values of
those derivatives.



PARTIAL DERIVATIVES AND CONTINUITY

Example Let 𝑓 𝑥, 𝑦 = ቐ
−

𝑥𝑦

𝑥2 + 𝑦2
: 𝑥, 𝑦 ≠ 0,0

0 : 𝑥, 𝑦 = 0,0

∴ 𝑓 𝑥, 𝑦 is discontinuous at 0,0 .

This shows that 𝒇 has partial derivatives at 𝟎, 𝟎 and the values of
both partial derivatives are 𝟎 at that point.
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CHAIN RULES FOR DERIVATIVES

If 𝑦 is a differentiable function of 𝑥 and 𝑥 is

a differentiable function of 𝑡 , then the

chain rule for functions of one variable

states that, under composition, 𝑦 becomes

a differentiable function of 𝑡 with

𝑑𝑦

𝑑𝑡
=
𝑑𝑦

𝑑𝑥

𝑑𝑥

𝑑𝑡

𝑦

𝑥

𝑡

𝑑𝑦

𝑑𝑥

𝑑𝑥

𝑑𝑡



CHAIN RULES FOR DERIVATIVES

• Let 𝑤 = 𝑓 𝑥, 𝑦 where 𝑓 is a differentiable

function of 𝑥 and 𝑦.

• If 𝑥 = 𝑔 𝑡 and 𝑦 = ℎ 𝑡 where 𝑔 and ℎ are

differentiable functions of 𝑡 then 𝑤 is a

differentiable function of 𝑡.

• And

𝑤

𝑥

𝑡

𝑑𝑦

𝑑𝑡

𝑑𝑥

𝑑𝑡

𝑦

𝑡

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝑑𝑤

𝑑𝑡
=

𝜕𝑤

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑤

𝜕𝑦

𝑑𝑦

𝑑𝑡



CHAIN RULES FOR DERIVATIVES

𝑤

𝑥

𝑡

𝑑𝑦

𝑑𝑡

𝑑𝑥

𝑑𝑡

𝑦

𝑡

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝑑𝑤

𝑑𝑡
=

𝜕𝑤

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑤

𝜕𝑦

𝑑𝑦

𝑑𝑡Example Let 𝑤 = 𝑥2𝑦 − 𝑦2, where 𝑥 = sin 𝑡

and 𝑦 = 𝑒𝑡. Find
𝑑𝑤

𝑑𝑡
when 𝑡 = 0.

𝑑𝑤

𝑑𝑡
=

𝜕𝑤

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑤

𝜕𝑦

𝑑𝑦

𝑑𝑡

= 2𝑥𝑦 cos 𝑡 + 𝑥2 − 2𝑦 𝑒𝑡

= 2 sin 𝑡 𝑒𝑡 cos 𝑡 + sin2 𝑡 − 2𝑒𝑡 𝑒𝑡

ቤ
𝑑𝑤

𝑑𝑡
𝑡=0

= −2
NOTE 𝑤 = 𝑒𝑡 sin2 𝑡 − 𝑒2𝑡



CHAIN RULES FOR DERIVATIVES

𝑤

𝑥

𝑑𝑧

𝑑𝑥

𝑑𝑦

𝑑𝑥

𝑦

𝑥

𝜕𝑤

𝜕𝑥 𝜕𝑤

𝜕𝑦

Example Let 𝑤 = 𝑥𝑦 + 𝑦𝑧, where 𝑦 = sin 𝑥 and
𝑧 = 𝑒𝑥. Use an appropriate form of the
chain rule to find Τ𝑑𝑤 𝑑𝑥.

𝑑𝑤

𝑑𝑥
=

𝜕𝑤

𝜕𝑥
+

= 𝑦 + 𝑥 + 𝑧 cos 𝑥 + 𝑦 𝑒𝑥

= 1 + 𝑒𝑥 sin 𝑥 + 𝑥 + 𝑒𝑥 cos 𝑥

𝑧

𝑥

𝜕𝑤

𝜕𝑧

𝜕𝑤

𝜕𝑦

𝑑𝑦

𝑑𝑥
+
𝜕𝑤

𝜕𝑧

𝑑𝑧

𝑑𝑥

NOTE

𝑤 = 𝑥 sin 𝑥 + 𝑒𝑥 sin 𝑥



CHAIN RULES FOR DERIVATIVES
𝑧

𝑥
𝜕𝑥

𝜕𝑢

𝑢

𝜕𝑧

𝜕𝑥

𝜕𝑧

𝜕𝑦
Example Given that 𝑧 = 𝑒𝑥𝑦, 𝑥 = 2𝑢 + 𝑣, and

𝑦 = Τ𝑢 𝑣. Find Τ𝜕𝑧 𝜕𝑢 and Τ𝜕𝑧 𝜕𝑣.

𝜕𝑧

𝜕𝑢
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑢
+

= 𝑦𝑒𝑥𝑦 2 + 𝑥𝑒𝑥𝑦 Τ1 𝑣

𝑦

𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑢

𝑢 𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣

= 𝑒𝑥𝑦 2𝑦 +
𝑥

𝑣

𝜕𝑧

𝜕𝑣
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑣
+

= 𝑦𝑒𝑥𝑦 1 + 𝑥𝑒𝑥𝑦 Τ−𝑢 𝑣2

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑣

= 𝑒𝑥𝑦 𝑦 −
𝑥𝑢

𝑣2

= 𝑒 2𝑢+𝑣 Τ𝑢 𝑣 1 +
4𝑢

𝑣

= −
2𝑢2

𝑣2
𝑒 2𝑢+𝑣 Τ𝑢 𝑣



CHAIN RULES FOR DERIVATIVES

𝑤

𝑥
𝜕𝑥

𝜕𝜃
𝜌

𝜕𝑤

𝜕𝑥 𝜕𝑤

𝜕𝑦

Example

Given that 𝑤 = 𝑥2 + 𝑦2 − 𝑧2, and
𝑥 = 𝜌 sin𝜙 cos 𝜃
𝑦 = 𝜌 sin𝜙 sin 𝜃
𝑧 = 𝜌 cos𝜙

Use appropriate forms of the
chain rule to find Τ𝜕𝑤 𝜕𝜃.

𝜕𝑤

𝜕𝜃
=

𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝜃
+ = 2𝑥 −𝜌 sin𝜙 sin 𝜃 + 2𝑦 𝜌 sin𝜙 cos 𝜃

𝑧

𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝜃

𝜌

𝜃

𝑦

𝜙

𝜌 𝜃

𝜙

𝜙

𝜕𝑦

𝜕𝜃

= 0 This result is explained by the fact that 𝑤
does not vary with 𝜃.



CHAIN RULES FOR DERIVATIVES
𝑧

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

Example Let 𝑓 be a differentiable function of one
variable and let 𝑧 = 𝑓 𝑥 + 2𝑦 . Show that

𝜕𝑧

𝜕𝑥
=

𝑑𝑧

𝑑𝑢

𝜕𝑢

𝜕𝑥

𝑢

𝑦𝑥

𝑑𝑧

𝑑𝑢

2
𝜕𝑧

𝜕𝑥
−
𝜕𝑧

𝜕𝑦
= 0

Let 𝑢 = 𝑥 + 2𝑦

=
𝑑𝑧

𝑑𝑢
1 =

𝑑𝑧

𝑑𝑢

𝜕𝑧

𝜕𝑦
=

𝑑𝑧

𝑑𝑢

𝜕𝑢

𝜕𝑦
=
𝑑𝑧

𝑑𝑢
2 = 2

𝑑𝑧

𝑑𝑢
2
𝜕𝑧

𝜕𝑥
−
𝜕𝑧

𝜕𝑦
= 2

𝑑𝑧

𝑑𝑢
− 2

𝑑𝑧

𝑑𝑢
= 0



IMPLICIT DIFFERENTIATION

Consider the special case where 𝑓 𝑥, 𝑦 is a function
of 𝑥 and 𝑦 and 𝑦 is a differentiable function of 𝑥.

𝑓

𝑥 𝑦

𝑥

𝑑𝑓

𝑑𝑥
=
𝜕𝑓

𝜕𝑥
+
𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑥

Now, suppose that 𝑓 𝑥, 𝑦 = 𝑐. Then

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑥

0 =
𝜕𝑓

𝜕𝑥
+
𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑥

𝑑𝑦

𝑑𝑥
= −

Τ𝜕𝑓 𝜕𝑥

Τ𝜕𝑓 𝜕𝑦



IMPLICIT DIFFERENTIATION

𝑑𝑦

𝑑𝑥
= −

Τ𝜕𝑓 𝜕𝑥

Τ𝜕𝑓 𝜕𝑦

Example Given that 𝑥3 + 𝑦2𝑥 − 3 = 0, find 
𝑑𝑦

𝑑𝑥

𝑥3 + 𝑦2𝑥 = 3

𝑓 𝑥, 𝑦

𝑑𝑦

𝑑𝑥
= −

3𝑥2 + 𝑦2

2𝑥𝑦
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DIRECTIONAL DERIVATIVES

• In this section we extend the concept of a partial derivative to

the more general notion of a directional derivative.

• You will see that 𝑓𝑥 𝑥, 𝑦 and 𝑓𝑦 𝑥, 𝑦 can be used to find the

slope in any direction.

• To determine the slope at a point on a surface, you will define a

new type of derivative called a directional derivative.



DIRECTIONAL DERIVATIVES

• To do this is to use a unit vector

u = 𝑢1i + 𝑢2j

that has its initial point at (𝑥0, 𝑦0) and points in the desired

direction.



DIRECTIONAL DERIVATIVES

If 𝑓 𝑥, 𝑦 is a function of 𝑥 and 𝑦, and if u = 𝑢1i + 𝑢2j is a unit vector,

then the directional derivative of 𝑓 in the direction of u at (𝑥0, 𝑦0) is

denoted by 𝐷u𝑓 𝑥0, 𝑦0 and is defined by

𝐷u𝑓 𝑥0, 𝑦0 = 𝑓𝑥 𝑥0, 𝑦0 𝑢1 + 𝑓𝑦 𝑥0, 𝑦0 𝑢2



DIRECTIONAL DERIVATIVES

Example Find the directional derivative of 𝑓 𝑥, 𝑦 = 𝑒𝑥𝑦 at (−2,0) in
the direction of the unit vector that makes an angle of Τ𝜋 3
with the positive 𝑥 −axis.

𝑓𝑥 𝑥, 𝑦 = 𝑦𝑒𝑥𝑦 𝑓𝑦 𝑥, 𝑦 = 𝑥𝑒𝑥𝑦

𝑓𝑥 −2,0 = 0 𝑓𝑦 −2,0 = −2

u = cos
𝜋

3
i + sin

𝜋

3
j

u =
1

2
i +

3

2
j

𝐷u𝑓 −2,0 = 𝑓𝑥 −2,0 𝑢1 + 𝑓𝑦 −2,0 𝑢2

= 0
1

2
+ −2

3

2
= − 3



DIRECTIONAL DERIVATIVES

Example Find the directional derivative of 𝑓 𝑥, 𝑦, 𝑧 = 𝑥2𝑦 − 𝑦𝑧3 + 𝑧 at
(1, −2,0) in the direction of the vector a = 2i + j − 2k.

𝑓𝑥 𝑥, 𝑦, 𝑧 = 2𝑥𝑦

𝑓𝑦 𝑥, 𝑦, 𝑧 = 𝑥2 − 𝑧3
u =

a

a

=
2

3
i +

1

3
j −

2

3
k𝑓𝑧 𝑥, 𝑦, 𝑧 = −3𝑦𝑧2 + 1

𝑓𝑥 1,−2,0 = −4

𝑓𝑦 1,−2,0 = 1

𝑓𝑧 1,−2,0 = 1

=
2i + j − 2k

22 + 12 + −2 2



DIRECTIONAL DERIVATIVES

Example Find the directional derivative of 𝑓 𝑥, 𝑦, 𝑧 = 𝑥2𝑦 − 𝑦𝑧3 + 𝑧 at
(1, −2,0) in the direction of the vector a = 2i + j − 2k.

u =
a

a
=
2

3
i +

1

3
j −

2

3
k

𝐷u𝑓 1,−2,0 = 𝑓𝑥 1,−2,0 𝑢1 + 𝑓𝑦 1,−2,0 𝑢2 + 𝑓𝑧 1,−2,0 𝑢3

= −4
2

3
+ 1

1

3
+ 1

−2

3
= −3

𝑓𝑥 1,−2,0 = −4 𝑓𝑦 1,−2,0 = 1 𝑓𝑧 1,−2,0 = 1



THE GRADIENT

NOTE 𝐷u𝑓 𝑥0, 𝑦0 = 𝑓𝑥 𝑥0, 𝑦0 𝑢1 + 𝑓𝑦 𝑥0, 𝑦0 𝑢2

= 𝑓𝑥 𝑥0, 𝑦0 , 𝑓𝑦 𝑥0, 𝑦0 ∙ 𝑢1, 𝑢2

= ∇𝑓 ⋅ u



PROPERTIES OF THE GRADIENT

Let 𝑓 be a function of either two variables or three variables and let 𝑃
denote the point 𝑃 𝑥0, 𝑦0 or 𝑃 𝑥0, 𝑦0, 𝑧0 , respectively. Assume that 𝑓 is
differentiable at 𝑃.

a) If ∇𝑓 = 0 at 𝑃, then all directional derivatives of 𝑓 at 𝑃 are zero.

b) If ∇𝑓 ≠ 0 at 𝑃, then among all possible directional derivatives of 𝑓 at

𝑃, the derivative in the direction of ∇𝑓 at 𝑃 has the largest value. The

value of this largest directional derivative is ∇𝑓 at 𝑃.

c) If ∇𝑓 ≠ 0 at 𝑃, then among all possible directional derivatives of 𝑓 at

𝑃, the derivative in the opposite direction of ∇𝑓 at 𝑃 has the smallest

value. The value of this smallest directional derivative is − ∇𝑓 at 𝑃.



PROPERTIES OF THE GRADIENT

Example Let 𝑓 𝑥, 𝑦 = 𝑥2𝑒𝑦. Find the maximum value of a directional
derivative at (−2,0), and find the unit vector in the direction in
which the maximum value occurs.

∇𝑓 𝑥, 𝑦 = 𝑓𝑥 𝑥, 𝑦 i + 𝑓𝑦 𝑥, 𝑦 j = 2𝑥𝑒𝑦i + 𝑥2𝑒𝑦j

∇𝑓 −2,0 = −4i + 4j

So, the maximum value of the directional derivative is

∇𝑓 −2,0 = −4 2 + 42 = 4 2



PROPERTIES OF THE GRADIENT

Example Let 𝑓 𝑥, 𝑦 = 𝑥2𝑒𝑦. Find the maximum value of a directional
derivative at (−2,0), and find the unit vector in the direction in
which the maximum value occurs.

So, the maximum value of the directional derivative is

∇𝑓 −2,0 = −4 2 + 42 = 4 2

This maximum occurs in the direction of ∇𝑓 −2,0 .

The unit vector in this direction is
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TANGENT PLANES AND NORMAL VECTORS TO LEVEL SURFACES
𝑭(𝒙, 𝒚, 𝒛) = 𝒄

In this section we will discuss “How do we find

equations of tangent planes to surfaces in

three-dimensional space?”

• Let 𝑆 be a surface given by 𝐹 𝑥, 𝑦, 𝑧 = 0

and let 𝑃 𝑥0, 𝑦0, 𝑧0 be a point on 𝑆.



TANGENT PLANES AND NORMAL VECTORS TO LEVEL SURFACES
𝑭(𝒙, 𝒚, 𝒛) = 𝒄



Find an equation of the tangent plane to the hyperboloid
𝑧2 − 2𝑥2 − 2𝑦2 = 12 at the point 1,−1,4 .

TANGENT PLANES AND NORMAL VECTORS TO LEVEL SURFACES
𝑭(𝒙, 𝒚, 𝒛) = 𝒄

Example

𝑧2 − 2𝑥2 − 2𝑦2 − 12 = 0

𝐹 𝑥, 𝑦, 𝑧 = 𝑧2 − 2𝑥2 − 2𝑦2 − 12

𝐹𝑥 𝑥, 𝑦, 𝑧 = −4𝑥

𝐹𝑦 𝑥, 𝑦, 𝑧 = −4𝑦

𝐹𝑧 𝑥, 𝑦, 𝑧 = 2𝑧

𝐹𝑥 1,−1,4 = −4

𝐹𝑦 1,−1,4 = 4

𝐹𝑧 1,−1,4 = 8

So, an equation of the tangent plane at 1,−1,4 is

−4 𝑥 − 1 + 4 𝑦 + 1 + 8 𝑧 − 4 = 0

−4𝑥 + 4𝑦 + 8𝑧 = 24

𝑥 − 𝑦 − 2𝑧 + 6 = 0



Find an equation for the tangent plane and parametric equations
for the normal line to the surface 𝑧 = 𝑥2𝑦 at the point (2,1,4).

TANGENT PLANES AND NORMAL VECTORS TO LEVEL SURFACES
𝑭(𝒙, 𝒚, 𝒛) = 𝒄

Example

𝑧 − 𝑥2𝑦 = 0 𝐹 𝑥, 𝑦, 𝑧 = 𝑧 − 𝑥2𝑦

∇𝐹 𝑥, 𝑦, 𝑧 = −2𝑥𝑦i − 𝑥2j + k

∇𝐹 2,1,4 = −4i − 4j + k

So, the tangent plane has equation

−4 𝑥 − 2 − 4 𝑦 − 1 + 𝑧 − 4 = 0

−4𝑥 − 4𝑦 + 𝑧 + 8 = 0

And the normal line has
parametric equations:

𝑥 = 2 − 4𝑡
𝑦 = 1 − 4𝑡
𝑧 = 4 + 𝑡
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EXTREMA

• A function 𝑓 of two variables is said to have

a relative maximum at a point (𝑥0, 𝑦0) if

there is a disk centered at (𝑥0, 𝑦0) such that

𝑓(𝑥0, 𝑦0) ≥ 𝑓(𝑥, 𝑦) for all points (𝑥, 𝑦) that

lie inside the disk.

• And 𝑓 is said to have an absolute maximum

at (𝑥0, 𝑦0) if 𝑓(𝑥0, 𝑦0) ≥ 𝑓(𝑥, 𝑦) for all

points (𝑥, 𝑦) in the domain of 𝑓.



EXTREMA

• A function 𝑓 of two variables is said to have

a relative minimum at a point (𝑥0, 𝑦0) if

there is a disk centered at (𝑥0, 𝑦0) such that

𝑓 𝑥0, 𝑦0 ≤ 𝑓(𝑥, 𝑦) for all points (𝑥, 𝑦) that

lie inside the disk.

• And 𝑓 is said to have an absolute minimum

at (𝑥0, 𝑦0) if 𝑓 𝑥0, 𝑦0 ≤ 𝑓(𝑥, 𝑦) for all

points (𝑥, 𝑦) in the domain of 𝑓.



BOUNDED SETS

A set of points in 2 −space is called

bounded if the entire set can be

contained within some rectangle.

And is called unbounded if there is

no rectangle that contains all the

points of the set.



THE EXTREME-VALUE THEOREM

If 𝑓(𝑥, 𝑦) is continuous on a closed and bounded set 𝑅, then 𝑓 has

both an absolute maximum and an absolute minimum on 𝑅.

NOTE If any of the conditions in the Extreme-Value Theorem fail to

hold, then there is no guarantee that an absolute maximum

or absolute minimum exists on the region 𝑅.



FINDING RELATIVE EXTREMA

NOTE If 𝑓 is differentiable and

∇𝑓 𝑥0, 𝑦0 = 𝑓𝑥 𝑥0, 𝑦0 i + 𝑓𝑦 𝑥0, 𝑦0 j = 0i + 0j = 0

then every directional derivative at 𝑥0, 𝑦0 must be 0.



FINDING RELATIVE EXTREMA



FINDING RELATIVE EXTREMA

Example Find the critical value(s) of 𝑓 𝑥, 𝑦 = 2𝑥2 + 𝑦2 + 8𝑥 − 6𝑦 + 20.

𝑓𝑥 𝑥, 𝑦 = 4𝑥 + 8

𝑓𝑦 𝑥, 𝑦 = 2𝑦 − 6

= 0

= 0

𝑥 = −2

𝑦 = 3

The critical point is −2,3 .

From the figure, 𝑓 has a relative minimum at
−2,3 , and the value of this relative

minimum is 𝑓 −2,3 = 3.



FINDING RELATIVE EXTREMA

Example Find the critical value(s) of 𝑓 𝑥, 𝑦 = 1 − 𝑥2 + 𝑦2 Τ1 3.

𝑓𝑥 𝑥, 𝑦 = 0 −
1

3
𝑥2 + 𝑦2 Τ−2 3 2𝑥

−2𝑥

3 𝑥2 + 𝑦2 Τ2 3
=



FINDING RELATIVE EXTREMA

Example Find the critical value(s) of 𝑓 𝑥, 𝑦 = 1 − 𝑥2 + 𝑦2 Τ1 3.

𝑓𝑥 𝑥, 𝑦 =

𝑓𝑦 𝑥, 𝑦 =

The only critical point is 0,0 .

From the figure, 𝑓 has a relative maximum at
0,0 , and the value of this relative minimum

is 𝑓 0,0 = 1.

−2𝑥

3 𝑥2 + 𝑦2 Τ2 3

−2𝑦

3 𝑥2 + 𝑦2 Τ2 3

Both partial derivatives exist for all points in
the 𝑥𝑦 −plane except for 0,0 .

The partial derivatives cannot both be 0
unless both 𝑥 and 𝑦 are 0.



FINDING RELATIVE EXTREMA

Example Find the critical value(s) of 𝑓 𝑥, 𝑦 = 𝑦2 − 𝑥2.

𝑓𝑥 𝑥, 𝑦 = −2𝑥

𝑓𝑦 𝑥, 𝑦 = 2𝑦

= 0

= 0

𝑥 = 0

𝑦 = 0

The critical point is 0,0 .

• The function 𝑓 has neither a relative maximum nor a relative

minimum at (0,0).

• The point (0,0) is called a saddle point ( سرجنقطة ) of 𝑓.



THE SECOND PARTIALS TEST

NOTE 𝐷 =
𝑓𝑥𝑥 𝑥0, 𝑦0 𝑓𝑥𝑦 𝑥0, 𝑦0
𝑓𝑥𝑦 𝑥0, 𝑦0 𝑓𝑦𝑦 𝑥0, 𝑦0



THE SECOND PARTIALS TEST

Example 𝑓 𝑥, 𝑦 = 2𝑥2 + 𝑦2 + 8𝑥 − 6𝑦 + 20.

𝑓𝑥 𝑥, 𝑦 = 4𝑥 + 8

𝑓𝑦 𝑥, 𝑦 = 2𝑦 − 6

The critical point is −2,3 .

𝑓 has a relative minimum at −2,3 by the second partial test,
and the value of this relative minimum is 𝑓 −2,3 = 3.

𝑓𝑥𝑥 𝑥, 𝑦 = 4

𝑓𝑦𝑦 𝑥, 𝑦 = 2

𝑓𝑥𝑦 𝑥, 𝑦 = 0

𝑓𝑥𝑥 −2,3 = 4

𝑓𝑦𝑦 −2,3 = 2

𝑓𝑥𝑦 −2,3 = 0

𝐷 = 𝑓𝑥𝑥 −2,3 𝑓𝑦𝑦 −2,3 − 𝑓𝑥𝑦
2 −2,3 = 4 2 − 0 2 = 8 > 0

> 0



THE SECOND PARTIALS TEST

Example 𝑓 𝑥, 𝑦 = 𝑦2 − 𝑥2.

𝑓𝑥 𝑥, 𝑦 = −2𝑥

𝑓𝑦 𝑥, 𝑦 = 2𝑦

The critical point is 0,0 .

𝑓𝑥𝑥 0,0 = −2

𝑓𝑦𝑦 0,0 = 2

𝑓𝑥𝑦 0,0 = 0

𝐷 = 𝑓𝑥𝑥 0,0 𝑓𝑦𝑦 0,0 − 𝑓𝑥𝑦
2 0,0 = −2 2 − 0 2 = −4 < 0

𝑓 has a saddle point at 0,0 by the second partial test.



THE SECOND PARTIALS TEST

Example Locate all relative extrema and saddle points of

𝑓 𝑥, 𝑦 = 4𝑥𝑦 − 𝑥4 − 𝑦4

𝑓𝑥 𝑥, 𝑦 = 4𝑦 − 4𝑥3

𝑓𝑦 𝑥, 𝑦 = 4𝑥 − 4𝑦3
= 0

= 0

𝑦 = 𝑥3

𝑥 = 𝑦3
𝑥 = 𝑥3 3 = 𝑥9

𝑥9 − 𝑥 = 0 𝑥 𝑥8 − 1 = 0

𝑥

−1

0

1

𝑦 = 𝑥3

−1

0

1

𝑓𝑥𝑥 𝑥, 𝑦 = −12𝑥2

𝑓𝑦𝑦 𝑥, 𝑦 = −12𝑦2

𝑓𝑥𝑦 𝑥, 𝑦 = 4



THE SECOND PARTIALS TEST

Example Locate all relative extrema and saddle points of

𝑓 𝑥, 𝑦 = 4𝑥𝑦 − 𝑥4 − 𝑦4
𝑥

−1

0

1

𝑦 = 𝑥3

−1

0

1

𝑓𝑥𝑥 𝑥, 𝑦 = −12𝑥2

𝑓𝑦𝑦 𝑥, 𝑦 = −12𝑦2

𝑓𝑥𝑦 𝑥, 𝑦 = 4

Critical Point 𝑓𝑥𝑥 𝑓𝑦𝑦 𝑓𝑥𝑦 𝐷 = 𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥𝑦
2

Type

−1,−1
0,0
1,1

−12
0

−12

−12
0

−12

4
4
4

128
−16
128

Local Max

Saddle

Local Max



FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
𝑓 𝑥, 𝑦 = 3𝑥𝑦 − 6𝑥 − 3𝑦 + 7

on the closed triangular region 𝑅 with vertices (0,0), (3,0), and
(0,5).

0,0 3,0

0,5



FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
𝑓 𝑥, 𝑦 = 3𝑥𝑦 − 6𝑥 − 3𝑦 + 7

on the closed triangular region 𝑅 with vertices (0,0), (3,0), and
(0,5).

0,0 3,0

0,5

𝑅

Bounded

1. Inside the region 𝑹.

𝑓𝑥 𝑥, 𝑦 = 3𝑦 − 6

𝑓𝑦 𝑥, 𝑦 = 3𝑥 − 3

= 0

= 0
1,2 is critical point

𝐷 = 𝑓𝑥𝑥 1,2 𝑓𝑦𝑦 1,2 − 𝑓𝑥𝑦
2 1,2

= 0 0 − 3 2 = −9 < 0

Saddle Point



FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
𝑓 𝑥, 𝑦 = 3𝑥𝑦 − 6𝑥 − 3𝑦 + 7

on the closed triangular region 𝑅 with vertices (0,0), (3,0), and
(0,5).

0,0 3,0

0,5

𝑅

Bounded

2. On the line through the points 𝟎, 𝟎 and 𝟑, 𝟎 .

𝑦 = 0 𝑓 𝑥, 0 = −6𝑥 + 7



FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
𝑓 𝑥, 𝑦 = 3𝑥𝑦 − 6𝑥 − 3𝑦 + 7

on the closed triangular region 𝑅 with vertices (0,0), (3,0), and
(0,5).

0,0 3,0

0,5

𝑅

Bounded

2. On the line through the points 𝟎, 𝟎 and 𝟑, 𝟎 .

𝑦 = 0 𝑢 𝑥 = −6𝑥 + 7 ; 𝑥 ∈ 0,3

Since 𝑢′ 𝑥 = −6 < 0 𝑢 𝑥 decreases on 0,3

0,0 MAX

3,0 MIN



FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
𝑓 𝑥, 𝑦 = 3𝑥𝑦 − 6𝑥 − 3𝑦 + 7

on the closed triangular region 𝑅 with vertices (0,0), (3,0), and
(0,5).

0,0 3,0

0,5

𝑅

Bounded

3. On the line through the points 𝟎, 𝟎 and 𝟎, 𝟓 .

𝑥 = 0 𝑓 0, 𝑦 = −3𝑦 + 7



FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
𝑓 𝑥, 𝑦 = 3𝑥𝑦 − 6𝑥 − 3𝑦 + 7

on the closed triangular region 𝑅 with vertices (0,0), (3,0), and
(0,5).

0,0 3,0

0,5

𝑅

Bounded

3. On the line through the points 𝟎, 𝟎 and 𝟎, 𝟓 .

𝑥 = 0 𝑤 𝑦 = −3𝑦 + 7 ; 𝑦 ∈ 0,5

Since 𝑤′ 𝑦 = −3 < 0 𝑤 𝑦 decreases on 0,5

0,0 MAX

0,5 MIN



FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
𝑓 𝑥, 𝑦 = 3𝑥𝑦 − 6𝑥 − 3𝑦 + 7

on the closed triangular region 𝑅 with vertices (0,0), (3,0), and
(0,5).

0,0 3,0

0,5

𝑅

Bounded

4. On the line through the points 𝟑, 𝟎 and 𝟎, 𝟓 .

𝑚 =
5 − 0

0 − 3
= −

5

3

𝑦 − 𝑦0 = 𝑚 𝑥 − 𝑥0

𝑦 − 0 = −
5

3
𝑥 − 3

𝑦 = −
5

3
𝑥 + 5



FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
𝑓 𝑥, 𝑦 = 3𝑥𝑦 − 6𝑥 − 3𝑦 + 7

on the closed triangular region 𝑅 with vertices (0,0), (3,0), and
(0,5).

0,0 3,0

0,5

𝑅

Bounded

4. On the line through the points 𝟑, 𝟎 and 𝟎, 𝟓 .

𝑦 = −
5

3
𝑥 + 5

𝑓 𝑥,−
5

3
𝑥 + 5 = 3𝑥 −

5

3
𝑥 + 5 − 6𝑥 − 3 −

5

3
𝑥 + 5 + 7

= −5𝑥2 + 14𝑥 − 8



FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
𝑓 𝑥, 𝑦 = 3𝑥𝑦 − 6𝑥 − 3𝑦 + 7

on the closed triangular region 𝑅 with vertices (0,0), (3,0), and
(0,5).

0,0 3,0

0,5

𝑅

Bounded

4. On the line through the points 𝟑, 𝟎 and 𝟎, 𝟓 .

𝑦 = −
5

3
𝑥 + 5 𝑔 𝑥 = −5𝑥2 + 14𝑥 − 8 ; 𝑥 ∈ 0,3

𝑔′ 𝑥 = −10𝑥 + 14 = 0

𝑥 =
7

5
0

7

5
3

+ −

−8
9

5
−11



FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
𝑓 𝑥, 𝑦 = 3𝑥𝑦 − 6𝑥 − 3𝑦 + 7

on the closed triangular region 𝑅 with vertices (0,0), (3,0), and
(0,5).

0,0 3,0

0,5

𝑅

Bounded

4. On the line through the points 𝟑, 𝟎 and 𝟎, 𝟓 .

𝑦 = −
5

3
𝑥 + 5 𝑔 𝑥 = −5𝑥2 + 14𝑥 − 8 ; 𝑥 ∈ 0,3

𝑔′ 𝑥 = −10𝑥 + 14 = 0

𝑥 =
7

5

7

5
,
8

3

3,0

MAX

MIN

0,5 MIN



FINDING ABSOLUTE EXTREMA ON CLOSED AND BOUNDED SETS

Example Find the absolute maximum and minimum values of
𝑓 𝑥, 𝑦 = 3𝑥𝑦 − 6𝑥 − 3𝑦 + 7

on the closed triangular region 𝑅 with vertices (0,0), (3,0), and
(0,5).

0,0 3,0

0,5

𝑅

Bounded

Point Type

1,2

0,0

3,0

0,5
7
5,
8
3

Saddle

MAX

MIN

MIN

MAX

𝒇 𝒙, 𝒚

1

7

−11

−8
9
5

Absolute

Absolute

Relative

Relative
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EXTREMUM PROBLEMS WITH CONSTRAINTS

• In this section we will study a powerful new method for maximizing or

minimizing a function subject to constraints on the variables.

• This method will help us to solve certain optimization problems that are

difficult or impossible to solve using the methods studied in the last

section.

• We wish to:

Find extrema of the function 𝑧 = 𝑓 𝑥, 𝑦 subject to a constraint given

by 𝑔 𝑥, 𝑦 = 𝑐.



EXTREMUM PROBLEMS WITH CONSTRAINTS

The scalar 𝜆 is called a Lagrange multiplier.NOTE



EXTREMUM PROBLEMS WITH CONSTRAINTS



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example At what point(s) on the line 𝑥 + 𝑦 = 3 does
𝑓 𝑥, 𝑦 = 9 − 𝑥2 − 𝑦2

have an absolute maximum, and what is that maximum?

𝑔 𝑥, 𝑦 = 𝑥 + 𝑦 − 3

𝑓𝑥 𝑥, 𝑦 = 𝜆𝑔𝑥 𝑥, 𝑦

𝑓𝑦 𝑥, 𝑦 = 𝜆𝑔𝑦 𝑥, 𝑦

𝑔 𝑥, 𝑦 = 0

−2𝑥 = 𝜆

−2𝑦 = 𝜆

𝑥 + 𝑦 − 3 = 0

−2𝑥 = −2𝑦



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example At what point(s) on the line 𝑥 + 𝑦 = 3 does
𝑓 𝑥, 𝑦 = 9 − 𝑥2 − 𝑦2

have an absolute maximum, and what is that maximum?

𝑔 𝑥, 𝑦 = 𝑥 + 𝑦 − 3

𝑓𝑥 𝑥, 𝑦 = 𝜆𝑔𝑥 𝑥, 𝑦

𝑓𝑦 𝑥, 𝑦 = 𝜆𝑔𝑦 𝑥, 𝑦

𝑔 𝑥, 𝑦 = 0

−2𝑥 = 𝜆

−2𝑦 = 𝜆

𝑥 + 𝑦 − 3 = 0

𝑥 = 𝑦

2𝑥 − 3 = 0

𝑥 =
3

2
𝑦 =

3

2



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example At what point(s) on the line 𝑥 + 𝑦 = 3 does
𝑓 𝑥, 𝑦 = 9 − 𝑥2 − 𝑦2

have an absolute maximum, and what is that maximum?

𝑥 =
3

2
𝑦 =

3

2

• Subject to the constraint 𝑥 + 𝑦 = 3, the function 𝑓 has

absolute maximum at
3

2
,
3

2
.

• The value of the absolute maximum is 𝑓
3

2
,
3

2
=

9

2
.



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Use Lagrange multipliers to find the maximum and minimum
values of

𝑓 𝑥, 𝑦 = 𝑥 − 3𝑦 − 1
subject to the constraint 𝑥2 + 3𝑦2 = 16.

𝑔 𝑥, 𝑦 = 𝑥2 + 3𝑦2 − 16𝑓𝑥 𝑥, 𝑦 = 𝜆𝑔𝑥 𝑥, 𝑦

𝑓𝑦 𝑥, 𝑦 = 𝜆𝑔𝑦 𝑥, 𝑦

𝑔 𝑥, 𝑦 = 0

1 = 2𝜆𝑥

−3 = 6𝜆𝑦

𝑥2 + 3𝑦2 − 16 = 0



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Use Lagrange multipliers to find the maximum and minimum
values of

𝑓 𝑥, 𝑦 = 𝑥 − 3𝑦 − 1
subject to the constraint 𝑥2 + 3𝑦2 = 16.

1 = 2𝜆𝑥

−3 = 6𝜆𝑦

𝑥2 + 3𝑦2 − 16 = 0

1

−3
=

𝑥

3𝑦

4𝑥2 − 16 = 0

𝑥 = 2

𝑥 = −2−𝑥 = 𝑦

÷

𝑦 = −2

𝑦 = 2

𝑓 2,−2 = 7

𝑓 −2,2 = −9

MAX

MIN



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find three positive numbers whose sum is 48 and such that their
product is as large as possible.

Let the three numbers 𝑥, 𝑦 and 𝑧.

Constraint: 𝑥 + 𝑦 + 𝑧 = 48

Function: 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧

Find the maximum value of 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧 subject to the
constraint 𝑥 + 𝑦 + 𝑧 = 48.



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧 subject to the
constraint 𝑥 + 𝑦 + 𝑧 = 48.

𝑔 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 + 𝑧 − 48

𝑓𝑥 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑥 𝑥, 𝑦, 𝑧

𝑓𝑦 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑦 𝑥, 𝑦, 𝑧

𝑔 𝑥, 𝑦, 𝑧 = 0

𝑓𝑧 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑧 𝑥, 𝑦, 𝑧

𝑦𝑧 = 𝜆

𝑥𝑧 = 𝜆

𝑥 + 𝑦 + 𝑧 − 48 = 0

𝑥𝑦 = 𝜆

𝑦

𝑥
= 1



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧 subject to the
constraint 𝑥 + 𝑦 + 𝑧 = 48.

𝑔 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 + 𝑧 − 48

𝑓𝑥 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑥 𝑥, 𝑦, 𝑧

𝑓𝑦 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑦 𝑥, 𝑦, 𝑧

𝑔 𝑥, 𝑦, 𝑧 = 0

𝑓𝑧 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑧 𝑥, 𝑦, 𝑧

𝑦𝑧 = 𝜆

𝑥𝑧 = 𝜆

𝑥 + 𝑦 + 𝑧 − 48 = 0

𝑥𝑦 = 𝜆

𝑦 = 𝑥



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧 subject to the
constraint 𝑥 + 𝑦 + 𝑧 = 48.

𝑔 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 + 𝑧 − 48

𝑓𝑥 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑥 𝑥, 𝑦, 𝑧

𝑓𝑦 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑦 𝑥, 𝑦, 𝑧

𝑔 𝑥, 𝑦, 𝑧 = 0

𝑓𝑧 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑧 𝑥, 𝑦, 𝑧

𝑦𝑧 = 𝜆

𝑥𝑧 = 𝜆

𝑥 + 𝑦 + 𝑧 − 48 = 0

𝑥𝑦 = 𝜆

𝑦 = 𝑥
𝑧

𝑦
= 1



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧 subject to the
constraint 𝑥 + 𝑦 + 𝑧 = 48.

𝑔 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 + 𝑧 − 48

𝑓𝑥 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑥 𝑥, 𝑦, 𝑧

𝑓𝑦 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑦 𝑥, 𝑦, 𝑧

𝑔 𝑥, 𝑦, 𝑧 = 0

𝑓𝑧 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑧 𝑥, 𝑦, 𝑧

𝑦𝑧 = 𝜆

𝑥𝑧 = 𝜆

𝑥 + 𝑦 + 𝑧 − 48 = 0

𝑥𝑦 = 𝜆

𝑦 = 𝑥

𝑦 = 𝑧



EXTREMUM PROBLEMS WITH CONSTRAINTS

Example Find the maximum value of 𝑓 𝑥, 𝑦, 𝑧 = 𝑥𝑦𝑧 subject to the
constraint 𝑥 + 𝑦 + 𝑧 = 48.

𝑔 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 + 𝑧 − 48

𝑓𝑥 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑥 𝑥, 𝑦, 𝑧

𝑓𝑦 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑦 𝑥, 𝑦, 𝑧

𝑔 𝑥, 𝑦, 𝑧 = 0

𝑓𝑧 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑧 𝑥, 𝑦, 𝑧

𝑦𝑧 = 𝜆

𝑥𝑧 = 𝜆

𝑥 + 𝑦 + 𝑧 − 48 = 0

𝑥𝑦 = 𝜆

𝑦 = 𝑥

𝑦 = 𝑧
𝑥 = 𝑦 = 𝑧

3𝑥 − 48 = 0 𝑥 = 16 𝑦 = 16 𝑧 = 16

𝑓 16,16,16 = 163 = 4096


