Course: Calculus (3)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.1]
DOUBLE INTEGRALS




THE AREA PROBLEM

Given a function f that is continuous and nonnegative on an

interval [a, b], find the area between the graph of f and the

interval [a, b| on the x —axis.
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THE VOLUME PROBLEM

Given a function f of two variables that is continuous

and nonnegative on a region R in the xy —plane, find

the volume of the solid enclosed between the surface

z = f(x,y) and the region R.

zZ=1xy

* Using lines parallel to the coordinate axes, divide

Y=

the rectangle enclosing the region R into sub-
rectangles, and exclude from consideration all
those sub-rectangles that contain any points
outside of R.
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THE VOLUME PROBLEM
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which is called the double integral of f(x, y)
over R.



EVALUATING DOUBLE INTEGRALS

* The partial derivatives of a function f (x, y) are calculated by holding one of the
variables fixed and differentiating with respect to the other variable.
* Let us consider the reverse of this process, partial integration.
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v’ The partial definite integral with v’ The partial definite integral with
respect to x. respect to y.
v Is evaluated by holding y fixed v Is evaluated by holding x fixed

and integrating with respect to x. and integrating with respect to y.



EVALUATING DOUBLE INTEGRALS
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Example (1) fxyzdx =y2fxdx — 5 ] — ~
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(2) jxyzdy=xjy2dy=%] = g
0 0 0

NOTE -+ A partial definite integral with respect to x is a function of y and hence
can be integrated with respect to y.
* A partial definite integral with respect to y can be integrated with respect
to x.
 This two-stage integration process is called iterated (or repeated)
integration.



EVALUATING DOUBLE INTEGRALS

* We introduce the following notation:
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* These integrals are called iterated integrals.
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EVALUATING DOUBLE INTEGRALS

3 4
Example Evaluate ff(éLO—ny)dydx
1 2

3 4 3[ 4
fj(éLO — 2xy)dydx = f j(40 — 2xy)dy|dx
1 2 1 12

3
_ f (40y — xy?)]4dx
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3 3
= f[(160 — 16x) — (80 — 4x)]|dx = j(80 — 12x)dx
1 1

=112



EVALUATING DOUBLE INTEGRALS

4 3

Homework Evaluate ff(40—2xy)dxdy =112
2 1

Fubini’s Theorem

Let R be the rectangle defined by .
R={(x,y): a<x<b,c<y<d)
= [a, b] X |c,d] J
If f(x,y) is continuous on this rectangle, then 7
b d av
J flx,y)dA = f f(x,y)dydx = j jf(x,y)dxdy ¢
R a c -y




EVALUATING DOUBLE INTEGRALS

Example Use a double integral to find the volume of the solid that is bounded above
by the plane z = 4 — x — y and below by the rectangle R = [0, 1] X [0, 2].
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V=ﬂ(4—x—y)dA=fj(él—x—y)dydx:f-f(él—x—y)dy-dx
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PROPERTIES OF DOUBLE INTEGRALS
j f cf(x,y)dA =c j f f(x,y)dA (c constant)
R R

U S gLl = U flx,y)dA £ ﬂ g(x,y)dA I
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PROPERTIES OF DOUBLE INTEGRALS

NOTE If R = [a, b] X |c,d] is a rectangular region, and f(x,y) = g(x)h(y), then

[ b

ﬂ flx,y)dA = jfg(x)h(y)dA = jg(x)dx_ _jdh(y)dy_
R R [IF _
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Example ffex“’ dxdy =ffexey dxdy
0 0
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EXERCISE SET 14.1 QUESTION 33

Homework Evaluate the integral by choosing a convenient order of integration:

% = ﬂ x cos(xy) cos?(mx)dA ; R=[0,7] x[0,7]
R



Course: Calculus (3)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.2]
DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS




ITERATED INTEGRALS WITH NONCONSTANT LIMITS OF INTEGRATION

In this section we will see that double integrals over nonrectangular regions can
often be evaluated as iterated integrals
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ITERATED INTEGRALS WITH NONCONSTANT LIMITS OF INTEGRATION

/3 cosy

/3 [cosy
Example f f xsinydxdy = f f xsinydx|dy
0 0 o Lo
m/3 5 . COS y
By Substitution _ J X S y] dy
2
lett = cosy 0 0
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DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Type | Region

is bounded on the left and right by
vertical lines x =a and x =b and is
bounded below and above by continuous
curves y = g;(x) and y = g,(x), where
g1(x) £ g,(x)fora <x <b.

AV
Y= gz(x)/
I( /
| y=gx
| | ¥
a b

Type Il Region

is bounded below and above by
horizontal lines y=c¢ and y=d
and is bounded on the left and right
by continuous curves x = h;(y) and

x = h,(y)satisfying hq(y) < hy(y)
forc<y<d




DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

1) If R is atype I region on which f(x,y) is continuous, then

f f(x,y)dA =jb g](x)f(x,y)dydx
i a g1(x)

2) If Ris atype Il region on which f (x,y) is continuous, then

d hy(y)

|| reeman=[ [ reydxay

R c hi(y)



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate ff xydA over the region R enclosed betweeny = %x, y = /x,
R

AV

x = 2and x = 4.

Type | Region

£ f xydA = f f xydydx = j | j xydy_ dx




DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate f (2x — y%)dA over the triangular region R enclosed

R

betweenthelinesy=—x+1,y=x+1,andy = 3.

f (2x — y?)dA =f J -(Zx—yz)dxdy

R

Type Il Region
AY
(=2, 3) 31 y=3 (2.3
'y >
y=—x+1 y=x+1
(x=1-y 1 (x=y-1)
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DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate ﬂ (2x — yz)dA over the triangular region R enclosed
R
between thelinesy =—x+1,y=x+1,andy = 3.

Type | Region
f (2x — y?)dA

R A

(-2,3) 4 3] m=3 (2,3)

J

y=—x+1 y=x+1
x=1-p 1 (x=y-1)
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DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate f (2x — y%)dA over the triangular region R enclosed

R
betweenthelinesy=—x+1,y=x+1,andy = 3.

_ B B Type | Region
f (2x — y2)dA ﬂ (2x — y2)dA + y (2x — y?)dA

R R

\ e




DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate f fe dxdy

0 y/2—>y=2x

: : . 2
Since there is no elementary antiderivative of e*

the integral cannot be evaluated by performing
the x —integration first.

We will try to evaluate this integral by expressing
it as an equivalent iterated integral with the order
of integration reversed.

\ s



DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

\ s

2 1
Example Evaluate f jexzdxdy AV
0 y/2
2 1 1 2x 1
j jexzdxdy =fj exzdydx =j fexzdy dx
0 y/2 0 O i
1
2
— jexzy]oxdx
By Substitution 0
Let t = x? 1 1
\__@f 2xe*” dx =fetdt =—e—1
0 0




AREA CALCULATED AS A DOUBLE INTEGRAL

Example areaof R = /f ldA = ff dA
Use a double integral to find the area of the

region R enclosed between the parabola y = %xz
and the liney = 2x. r'
z =1

Cylinder with base R and height 1



AREA CALCULATED AS A DOUBLE INTEGRAL area of R = /f ldA = [f dA

R R

Example Use a double integral to find the area of the

region R enclosed between the parabola y = %xz AY '
and the line y = 2x. g L (4, 8)
y=12x
Areaof R = ff dA (Type Il Region) X = %y
R
38 \/ﬂ 8 >
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Y) 16
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AREA CALCULATED AS A DOUBLE INTEGRAL area of R = /f ldA = [f dA

R R
Example Use a double integral to find the area of the
region R enclosed between the parabola y = %xz AY '
and the line y = 2x. g (4, 8)

Area of R = f dA (Type | Region)
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EXERCISE SET 14.2

9. Let R be the region shown in the accompanying figure.
Fill in the missing limits of integration.
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MULTIPLE INTEGRALS
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DOUBLE INTEGRALS IN POLAR COORDINATES




SIMPLE POLAR REGIONS

 Some double integrals are easier to evaluate if the region of integration is expressed
in polar coordinates.

* This is usually true if the region is bounded by any curve whose equation is simpler
in polar coordinates than in rectangular coordinates.

 Example: Consider the quarter-disk x? + y? = 4 in the first quadrant shown below.

Polar
Coordinates

Rectangular
Coordinates

0<x<?2

0<y<+4-—x?




DOUBLE INTEGRALS IN POLAR COORDINATES

NOTE

Theorem

A polar rectangle is a simple polar region
for which the bounding polar curves are
circular arcs.

If R is a simple polar region whose
boundaries are therays@ = aand 8 = f3
and the curves r = r;(0) and r = ,(6),
and if f(r, 8) is continuous on R, then

B 12(0)
j f(T»Q)dA=j j f(r,0) rdrdd

R a 11(6)




DOUBLE INTEGRALS IN POLAR COORDINATES

Example Find the volume of the solid bounded by the cylinder x? + y? = 4 and
the planey + z = 4.

V= j (4 —vy)dA =f f(4—rsin9)rdrd9
R
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DOUBLE INTEGRALS IN POLAR COORDINATES
1vV1—x2
Example Evaluate f f (x2 +y2)3/2dydx

1V1—x2
f f (x2 +y?)3/2dydx = j f (r2)3/2rdrd@
-1 O

T

T 1
=Jfr4drd0 = f—d@
0 0

v S




DOUBLE INTEGRALS IN POLAR COORDINATES

1

Example Evaluate ff dA where R is the region in the
1+ x2 + y?

R

first quadrant bounded by y = 0, y = x, x% + y? = 1 and x? + y* = 4.

1 1
ff1+x2+y2dA —f f1+r2 rdrd@
R

/4 2 ]
r
f dr|do
1

:f 1+ 72
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DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate ff

first quadrant bounded by y = 0, y = x, x% + y? = 1 and x? + y* = 4.

1
A =
ff1+x2+y2d f
R

|+

/4

2
1]
2

1

dA

1+ x? 4 y?
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where R is the region in the
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DOUBLE INTEGRALS IN POLAR COORDINATES

Example Use a double-integral to show that the area of the region R shown is 97”.
Arc of a circle of
Area of R = U dA = f J rdrd@ A radius 3 (centered
at origin)
R
~
y=-vix \| &




DOUBLE INTEGRALS IN POLAR COORDINATES

Example Use a double-integral to show that the area of the region R shown is 97”.
3
Arc of a circle of
Areaof R = ﬂ dA = f jrdrd@ 9g=—C"_1 5 o  radius 3 (centered
, 3 at origin)
R 0 J
: : s
2t/3[ 3 21/3
7"2 ; y = —V/3x K
= j f rdr|df = j ) do 5
—mt/3 |0 | —m/3 0
21/ 3 21/3
= J 240 =-0| =T V3
B 2 _2 _7 tan9=X—_3x=—\/§
-1/3 —1/3 X X



DOUBLE INTEGRALS IN POLAR COORDINATES
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Example Evaluate fe‘xzdle
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DOUBLE INTEGRALS IN POLAR COORDINATES

co

Example Evaluate fe‘xzdle
0

je‘(xzﬂ’z)dxdy =j je"”zrdrdﬁ
0

2|
2

re " dr|df By substitution. Let t = r?.

I
O\i o*i OS8

0
00 ] /2 o /2
1 —1 1
e tdtlde = | —et| dOo = | =dO =
2 2
0 0 0 0




Course: Calculus (3)

Chapter: [14]
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EVALUATING TRIPLE INTEGRALS OVER RECTANGULAR BOXES

Let G be the rectangular box defined by the inequalities
a<x<b , c<y<d , k<z<?

If f is continuous on the region G, then
b d ¢

fo f(x,y,z)dV=!kaff(x,y,z)dzdydx

Moreover, the iterated integral on the right can be replaced with any of the five other

iterated integrals that result by altering the order of integration.



EVALUATING TRIPLE INTEGRALS OVER RECTANGULAR BOXES

Example Evaluate the triple integral fff 12xy?z3dV over the rectangular box

G:=|}<L2]><U13]x:UL2]G

[ oo |
-

fff 12xy?z3dV = 12
G

| o\w O\w

IPLSN

xdx

-1
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y*dy

2 2 3
lexyZZdedydx = ff
0 “10 |

48xy2dydx = j432xdx = 648

l

z3dz

2
j 12xy?z3dz| dydx
0

= 643



EVALUATING TRIPLE INTEGRALS OVER MORE GENERAL REGIONS

1 y./1-y?
Example Evaluate jf j z dzdxdy
00 O

1 y./1-y? 1 yl 1-y2 1 yl
ff f zdzdxdyszzzzl dxdy =jj§(1—y2)dxdy
00 0 0 0 0 0 0
1 y 1
= j§(1 —yz)x] dy = | 5(1—y*)ydy
0 0 0



