Course: Calculus (3)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.1]
DOUBLE INTEGRALS

THE AREA PROBLEM

Given a function f that is continuous and nonnegative on an interval $[a, b]$, find the area between the graph of f and the
 interval $[a, b]$ on the x-axis.

$$
\begin{aligned}
A & \approx \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k} \\
A & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k} \\
\int_{a}^{b} f(x) d x & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}
\end{aligned}
$$

THE VOLUME PROBLEM

Given a function f of two variables that is continuous and nonnegative on a region R in the $x y$-plane, find the volume of the solid enclosed between the surface $z=f(x, y)$ and the region R.

- Using lines parallel to the coordinate axes, divide the rectangle enclosing the region R into subrectangles, and exclude from consideration all those sub-rectangles that contain any points outside of R.

THE VOLUME PROBLEM

$$
\begin{aligned}
& V \approx \sum_{k=1}^{n} f\left(x_{k}^{*}, y_{k}^{*}\right) \Delta A_{k} \\
& V=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}^{*}, y_{k}^{*}\right) \Delta A_{k} \\
& \iint_{R} f(x, y) d A=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}^{*}, y_{k}^{*}\right) \Delta A_{k}
\end{aligned}
$$

which is called the double integral of $f(x, y)$ over R.

EVALUATING DOUBLE INTEGRALS

- The partial derivatives of a function $f(x, y)$ are calculated by holding one of the variables fixed and differentiating with respect to the other variable.
- Let us consider the reverse of this process, partial integration.

\checkmark The partial definite integral with respect to x.
\checkmark Is evaluated by holding y fixed and integrating with respect to x.

\checkmark The partial definite integral with respect to y.
\checkmark Is evaluated by holding x fixed and integrating with respect to y.

EVALUATING DOUBLE INTEGRALS

Example
(1) $\left.\int_{0}^{1} x y^{2} d x=y^{2} \int_{0}^{1} x d x=\frac{y^{2} x^{2}}{2}\right]_{0}^{1}=\frac{y^{2}}{2}$
(2) $\left.\int_{0}^{1} x y^{2} d y=x \int_{0}^{1} y^{2} d y=\frac{x y^{3}}{3}\right]_{0}^{1}=\frac{x}{3}$

NOTE - A partial definite integral with respect to x is a function of y and hence can be integrated with respect to y.

- A partial definite integral with respect to y can be integrated with respect to x.
- This two-stage integration process is called iterated (or repeated) integration.

EVALUATING DOUBLE INTEGRALS

- We introduce the following notation:

$$
\begin{aligned}
& \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y \\
& \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x
\end{aligned}
$$

- These integrals are called iterated integrals.

EVALUATING DOUBLE INTEGRALS

Example Evaluate $\int_{1}^{3} \int_{2}^{4}(40-2 x y) d y d x$

$$
\left.\begin{array}{rl}
\int_{1}^{3} \int_{2}^{4}(40-2 x y) d y d x & =\int_{1}^{3}\left[\int_{2}^{4}(40-2 x y) d y\right] d x \\
& \left.=\int_{1}^{3}\left(40 y-x y^{2}\right)\right]_{2}^{4} d x \\
& =\int_{1}^{3}[(160-16 x)-(80-4 x)] d x
\end{array}\right)=\int_{1}^{3}(80-12 x) d x
$$

EVALUATING DOUBLE INTEGRALS

Homework Evaluate $\int_{2}^{4} \int_{1}^{3}(40-2 x y) d x d y$
Fubini's Theorem
Let R be the rectangle defined by

$$
\begin{aligned}
R & =\{(x, y): a \leq x \leq b, c \leq y \leq d\} \\
& =[a, b] \times[c, d]
\end{aligned}
$$

If $f(x, y)$ is continuous on this rectangle, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

EVALUATING DOUBLE INTEGRALS

Example Use a double integral to find the volume of the solid that is bounded above by the plane $z=4-x-y$ and below by the rectangle $R=[0,1] \times[0,2]$.

$$
\begin{aligned}
V=\iint_{R}(4-x-y) d A & =\int_{0}^{1} \int_{0}^{2}(4-x-y) d y d x=\int_{0}^{1}\left[\int_{0}^{2}(4-x-y) d y\right] d x \\
& \left.=\int_{0}^{1}\left(4 y-x y-\frac{y^{2}}{2}\right)\right]_{0}^{2} d x \\
& =\int_{0}^{1}(6-2 x) d x=5=\int_{0}^{2} \int_{0}^{1}(4-x-y) d x d y
\end{aligned}
$$

PROPERTIES OF DOUBLE INTEGRALS

$$
\iint_{R} c f(x, y) d A=c \iint_{R} f(x, y) d A \quad \quad(c \text { constant })
$$

$$
\iint_{R}[f(x, y) \pm g(x, y)] d A=\iint_{R} f(x, y) d A \pm \iint_{R} g(x, y) d A
$$

$$
\iint_{R} f(x, y) d A=\iint_{R_{1}} f(x, y) d A+\iint_{R_{2}} f(x, y) d A
$$

PROPERTIES OF DOUBLE INTEGRALS

NOTE If $R=[a, b] \times[c, d]$ is a rectangular region, and $f(x, y)=g(x) h(y)$, then

$$
\iint_{R} f(x, y) d A=\iint_{R} g(x) h(y) d A=\left[\int_{a}^{b} g(x) d x\right]\left[\int_{c}^{d} h(y) d y\right]
$$

Example $\int_{0}^{1} \int_{0}^{2} e^{x+y} d x d y=\int_{0}^{1} \int_{0}^{2} e^{x} e^{y} d x d y$

$$
=\left(\int_{0}^{2} e^{x} d x\right)\left(\int_{0}^{1} e^{y} d y\right)=\left(e^{2}-1\right)(e-1)
$$

EXERCISE SET 14.1 QUESTION 33

Homework Evaluate the integral by choosing a convenient order of integration:

$$
\frac{1}{3 \pi}=\iint_{R} x \cos (x y) \cos ^{2}(\pi x) d A \quad ; \quad R=\left[0, \frac{1}{2}\right] \times[0, \pi]
$$

Course: Calculus (3)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.2]
DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

ITERATED INTEGRALS WITH NONCONSTANT LIMITS OF INTEGRATION

In this section we will see that double integrals over nonrectangular regions can often be evaluated as iterated integrals

$$
\text { Example } \begin{aligned}
\int_{0}^{1} \int_{-x}^{x^{2}} y^{2} x d y d x & \left.=\int_{0}^{1}\left[\int_{-x}^{x^{2}} y^{2} x d y\right] d x=\int_{0}^{1} \frac{x y^{3}}{3}\right]_{-x}^{x^{2}} d x \\
& \left.=\int_{0}^{1}\left(\frac{x^{7}}{3}+\frac{x^{4}}{3}\right) d x=\left(\frac{x^{8}}{24}+\frac{x^{5}}{15}\right)\right]_{0}^{1}=\frac{13}{120}
\end{aligned}
$$

ITERATED INTEGRALS WITH NONCONSTANT LIMITS OF INTEGRATION

Example $\int_{0}^{\pi / 3} \int_{0}^{\cos y} x \sin y d x d y=\int_{0}^{\pi / 3}\left[\int_{0}^{\cos y} x \sin y d x\right] d y$
By Substitution

Let $t=\cos y$
$\frac{d t}{d y}=-\sin y$
$d y=-\frac{d t}{\sin y}$
$y=\pi / 3 \quad t=1 / 2$
$y=0$
:---
$=\int_{0}^{\pi / 3} \frac{1}{2} \cos ^{2} y \sin y d y=-\frac{1}{2} \int_{1}^{1 / 2} t^{2} \sin y \frac{d t}{\sin y}$
:---

DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Type I Region

is bounded on the left and right by vertical lines $x=a$ and $x=b$ and is bounded below and above by continuous curves $y=g_{1}(x)$ and $y=g_{2}(x)$, where $g_{1}(x) \leq g_{2}(x)$ for $a \leq x \leq b$.

Type II Region

is bounded below and above by horizontal lines $y=c$ and $y=d$ and is bounded on the left and right by continuous curves $x=h_{1}(y)$ and $x=h_{2}(y)$ satisfying $h_{1}(y) \leq h_{2}(y)$ for $c \leq y \leq d$

DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

1) If R is a type I region on which $f(x, y)$ is continuous, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

2) If R is a type II region on which $f(x, y)$ is continuous, then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate $\iint_{R} x y d A$ over the region R enclosed between $y=\frac{1}{2} x, y=\sqrt{x}$,

$$
x=2 \text { and } x=4
$$

Type I Region

$$
\begin{aligned}
\iint_{R} x y d A & =\iint x y d y d x=\int_{2}^{4}\left[\int_{x / 2}^{\sqrt{x}} x y d y\right] d x \\
& \left.=\int_{2}^{4} \frac{x y^{2}}{2}\right]_{x / 2}^{\sqrt{x}} d x=\int_{2}^{4}\left(\frac{x^{2}}{2}-\frac{x^{3}}{8}\right) d x=\frac{11}{6}
\end{aligned}
$$

DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate $\iint_{R}\left(2 x-y^{2}\right) d A$ over the triangular region R enclosed between the lines $y=-x+1, y=x+1$, and $y=3$.

$$
\begin{aligned}
\iint_{R}\left(2 x-y^{2}\right) d A & =\iint\left(2 x-y^{2}\right) d x d y \\
& \left.=\int_{1}^{3} x^{2}-x y^{2}\right]_{1-y}^{y-1} d y \\
& =\int_{1}^{3}\left(2 y^{2}-2 y^{3}\right) d y=-\frac{68}{3}
\end{aligned}
$$

Type II Region

DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate $\iint_{R}\left(2 x-y^{2}\right) d A$ over the triangular region R enclosed between the lines $y=-x+1, y=x+1$, and $y=3$.

$$
\iint_{R}\left(2 x-y^{2}\right) d A
$$

Type I Region

DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate $\iint_{R}\left(2 x-y^{2}\right) d A$ over the triangular region R enclosed between the lines $y=-x+1, y=x+1$, and $y=3$.

$$
\iint_{R}\left(2 x-y^{2}\right) d A=\iint_{R_{1}}\left(2 x-y^{2}\right) d A+\iint_{R_{2}}\left(2 x-y^{2}\right) d A
$$

Type I Region

$$
=\int_{-2}^{0} \int_{-x+1}^{3}\left(2 x-y^{2}\right) d y d x+\int_{0}^{2} \int_{x+1}^{3}\left(2 x-y^{2}\right) d y d x \quad y=-x+1
$$

DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate $\int_{0}^{2} \int_{y / 2}^{1} e^{x^{2}} d x d y$
Since there is no elementary antiderivative of $e^{x^{2}}$, the integral cannot be evaluated by performing the x-integration first.

We will try to evaluate this integral by expressing it as an equivalent iterated integral with the order of integration reversed.

DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

$$
\begin{aligned}
& \text { Example Evaluate } \int_{0}^{2} \int_{y / 2}^{1} e^{x^{2}} d x d y \\
& \int_{0}^{2} \int_{y / 2}^{1} e^{x^{2}} d x d y=\iint e^{x^{2}} d y d x=\int_{0}^{1}\left[\int_{0}^{2 x} e^{x^{2}} d y\right] d x \\
& \begin{array}{ll}
& \left.=\int_{0}^{1} e^{x^{2}} y\right]_{0}^{2 x} d x \\
\begin{array}{l}
\text { By Substitution } \\
\text { Let } t=x^{2}
\end{array} & =\int_{0}^{1} 2 x e^{x^{2}} d x=\int_{0}^{1} e^{t} d t=e-1
\end{array}
\end{aligned}
$$

AREA CALCULATED AS A DOUBLE INTEGRAL

Example

Use a double integral to find the area of the region R enclosed between the parabola $y=\frac{1}{2} x^{2}$ and the line $y=2 x$.

$$
\text { area of } R=\iint_{R} 1 d A=\iint_{R} d A
$$

AREA CALCULATED AS A DOUBLE INTEGRAL

$$
\text { area of } R=\iint_{R} 1 d A=\iint_{R} d A
$$

Example Use a double integral to find the area of the region R enclosed between the parabola $y=\frac{1}{2} x^{2}$ and the line $y=2 x$.

$$
\text { Area of } \begin{aligned}
R & =\iint_{R} d A \quad \text { (Type II Region) } \\
& \left.=\int_{0}^{8} \int_{y / 2}^{\sqrt{2 y}} d x d y=\int_{0}^{8} x\right]_{y / 2}^{\sqrt{2 y}} d y \\
& =\int_{0}^{8}\left(\sqrt{2 y}-\frac{y}{2}\right) d y=\frac{16}{3}
\end{aligned}
$$

AREA CALCULATED AS A DOUBLE INTEGRAL

$$
\text { area of } R=\iint_{R} 1 d A=\iint_{R} d A
$$

Example Use a double integral to find the area of the region R enclosed between the parabola $y=\frac{1}{2} x^{2}$ and the line $y=2 x$.

$$
\text { Area of } \begin{aligned}
R & =\iint_{R} d A \quad \text { (Type I Region) } \\
& \left.=\int_{0}^{4} \int_{x^{2} / 2}^{2 x} d y d x=\int_{0}^{4} y\right]_{x^{2} / 2}^{2 x} d x \\
& =\int_{0}^{4}\left(2 x-\frac{x^{2}}{2}\right) d x=\frac{16}{3}
\end{aligned}
$$

EXERCISE SET 14.2

9. Let R be the region shown in the accompanying figure. Fill in the missing limits of integration.
(a) $\iint_{R} f(x, y) d A=\int_{\square}^{\square} \int_{\square}^{\square} f(x, y) d y d x$
(b) $\iint_{R} f(x, y) d A=\int_{\square}^{\square} \int_{\square}^{\square} f(x, y) d x d y$

Course: Calculus (3)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.3]
DOUBLE INTEGRALS IN POLAR COORDINATES

SIMPLE POLAR REGIONS

- Some double integrals are easier to evaluate if the region of integration is expressed in polar coordinates.
- This is usually true if the region is bounded by any curve whose equation is simpler in polar coordinates than in rectangular coordinates.
- Example: Consider the quarter-disk $x^{2}+y^{2}=4$ in the first quadrant shown below.

```
Rectangular
Coordinates
\(0 \leq x \leq 2\)
\(0 \leq y \leq \sqrt{4-x^{2}}\)
```


$$
\begin{aligned}
& \begin{array}{c}
\text { Polar } \\
\text { Coordinates }
\end{array} \\
& 0 \leq r \leq 2 \\
& 0 \leq \theta \leq \pi / 2
\end{aligned}
$$

DOUBLE INTEGRALS IN POLAR COORDINATES

NOTE A polar rectangle is a simple polar region for which the bounding polar curves are circular arcs.

Theorem If R is a simple polar region whose boundaries are the rays $\theta=\alpha$ and $\theta=\beta$ and the curves $r=r_{1}(\theta)$ and $r=r_{2}(\theta)$, and if $f(r, \theta)$ is continuous on R, then

$$
\iint_{R} f(r, \theta) d A=\int_{\alpha}^{\beta} \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(r, \theta) r d r d \theta
$$

DOUBLE INTEGRALS IN POLAR COORDINATES

Example Find the volume of the solid bounded by the cylinder $x^{2}+y^{2}=4$ and the plane $y+z=4$.

$$
\begin{aligned}
V & =\iint_{R}(4-y) d A=\iint(4-r \sin \theta) r d r d \theta \\
& =\int_{0}^{2 \pi}\left[\int_{0}^{2}\left(4 r-r^{2} \sin \theta\right) d r\right] d \theta \\
& \left.=\int_{0}^{2 \pi}\left(2 r^{2}-\frac{1}{3} r^{3} \sin \theta\right)\right]_{0}^{2} d \theta=\int_{0}^{2 \pi}\left(8-\frac{8}{3} \sin \theta\right) d \theta \\
& \left.=\left(8 \theta+\frac{8}{3} \cos \theta\right)\right]_{0}^{2 \pi}=16 \pi
\end{aligned}
$$

DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(x^{2}+y^{2}\right)^{3 / 2} d y d x$

$$
\begin{aligned}
\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(x^{2}+y^{2}\right)^{3 / 2} d y d x & =\iint\left(r^{2}\right)^{3 / 2} r d r d \theta \\
& =\int_{0}^{\pi} \int_{0}^{1} r^{4} d r d \theta=\int_{0}^{\pi} \frac{1}{5} d \theta=\frac{\pi}{5}
\end{aligned}
$$

DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate $\iint_{R} \frac{1}{1+x^{2}+y^{2}} d A$ where R is the region in the first quadrant bounded by $y=0, y=x, x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

$$
\begin{aligned}
\iint_{R} \frac{1}{1+x^{2}+y^{2}} d A & =\iint \frac{1}{1+r^{2}} r d r d \theta \\
& =\int_{0}^{\pi / 4}\left[\int_{1}^{2} \frac{r}{1+r^{2}} d r\right] d \theta
\end{aligned}
$$

$$
\tan \theta=\frac{y}{x}=\frac{x}{x}=1
$$

$$
\theta=\frac{\pi}{4}
$$

DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate $\iint_{R} \frac{1}{1+x^{2}+y^{2}} d A$ where R is the region in the first quadrant bounded by $y=0, y=x, x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

$$
\begin{aligned}
\iint_{R} \frac{1}{1+x^{2}+y^{2}} d A & =\iint \frac{1}{1+r^{2}} r d r d \theta \\
& \left.=\int_{0}^{\pi / 4}\left[\frac{1}{2} \int_{1}^{2} \frac{2 r}{1+r^{2}} d r\right] d \theta=\int_{0}^{\pi / 4} \frac{1}{2} \ln \left|1+r^{2}\right|\right]_{1}^{2} d \theta \\
& =\int_{0}^{\pi / 4} \frac{1}{2} \ln \left(\frac{5}{2}\right) d \theta=\frac{\pi}{8} \ln \left(\frac{5}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =\frac{y}{x}=\frac{x}{x}=1 \\
\theta & =\frac{\pi}{4}
\end{aligned}
$$

DOUBLE INTEGRALS IN POLAR COORDINATES

Example Use a double-integral to show that the area of the region R shown is $\frac{9 \pi}{2}$.
Area of $R=\iint_{R} d A=\iint r d r d \theta$

DOUBLE INTEGRALS IN POLAR COORDINATES

Example Use a double-integral to show that the area of the region R shown is $\frac{9 \pi}{2}$.

$$
\text { Area of } \begin{aligned}
R & =\iint_{R} d A=\iint_{0}^{3} r d r d \theta \\
& \left.=\int_{-\pi / 3}^{2 \pi / 3}\left[\int_{0}^{3} r d r\right] d \theta=\int_{-\pi / 3}^{2 \pi / 3} \frac{r^{2}}{2}\right]_{0}^{3} d \theta \\
& \left.=\int_{-\pi / 3}^{2 \pi / 3} \frac{9}{2} d \theta=\frac{9}{2} \theta\right]_{-\pi / 3}^{2 \pi / 3}=\frac{9 \pi}{2}
\end{aligned}
$$

DOUBLE INTEGRALS IN POLAR COORDINATES

$$
\begin{aligned}
& \text { Example Evaluate } \int_{0}^{\infty} e^{-x^{2}} d x=I \\
& \begin{aligned}
I^{2}=\left(\int_{0}^{\infty} e^{-x^{2}} d x\right)^{2} & =\left(\int_{0}^{\infty} e^{-x^{2}} d x\right)\left(\int_{0}^{\infty} e^{-x^{2}} d x\right) \\
& =\left(\int_{0}^{\infty} e^{-x^{2}} d x\right)\left(\int_{0}^{\infty} e^{-y^{2}} d y\right) \\
& =\int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}} e^{-y^{2}} d x d y=\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y
\end{aligned}
\end{aligned}
$$

DOUBLE INTEGRALS IN POLAR COORDINATES

$$
\begin{aligned}
& \text { Example Evaluate } \int_{0}^{\infty} e^{-x^{2}} d x=I \\
& I^{2}=\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\int\left(e^{-r^{2}} r d r d \theta\right. \\
& \quad=\int_{0}^{\pi / 2}\left[\int_{0}^{\infty} r e^{-r^{2}} d r\right] d \theta \text { By substitution. Let } t=r^{2} \\
& \left.\quad=\int_{0}^{\pi / 2}\left[\int_{0}^{\infty} \frac{1}{2} e^{-t} d t\right] d \theta=\int_{0}^{\pi / 2} \frac{-1}{2} e^{-t}\right]_{0}^{\infty} d \theta=\int_{0}^{\pi / 2} \frac{1}{2} d \theta=\frac{\pi}{4}
\end{aligned}
$$

Course: Calculus (3)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.5]
Triple Integral [lterated Method]

EVALUATING TRIPLE INTEGRALS OVER RECTANGULAR BOXES

Let G be the rectangular box defined by the inequalities

$$
a \leq x \leq b \quad, \quad c \leq y \leq d \quad, \quad k \leq z \leq \ell
$$

If f is continuous on the region G, then

$$
\iiint_{G} f(x, y, z) d V=\int_{a}^{b} \int_{c}^{d} \int_{k}^{\ell} f(x, y, z) d z d y d x
$$

Moreover, the iterated integral on the right can be replaced with any of the five other iterated integrals that result by altering the order of integration.

evaluating Triple INTEGRALS OVER RECTANGULAR BOXES

Example Evaluate the triple integral $\iiint_{G} 12 x y^{2} z^{3} d V$ over the rectangular box

$$
\begin{aligned}
& G=[-1,2] \times[0,3] \times[0,2] \\
& \begin{aligned}
\iiint_{G} 12 x y^{2} z^{3} d V & =\int_{-1}^{2} \int_{0}^{3} \int_{0}^{2} 12 x y^{2} z^{3} d z d y d x=\int_{-1}^{2} \int_{0}^{3}\left[\int_{0}^{2} 12 x y^{2} z^{3} d z\right] d y d x \\
& =\int_{-1}^{3} \int_{0}^{3} 48 x y^{2} d y d x=\int_{-1}^{2} 432 x d x=648
\end{aligned} \\
& \iiint_{G} 12 x y^{2} z^{3} d V=12\left[\int_{-1}^{2} x d x\right]\left[\int_{0}^{3} y^{2} d y\right]\left[\int_{0}^{2} z^{3} d z\right]=648
\end{aligned}
$$

EVALUATING TRIPLE INTEGRALS OVER MORE GENERAL REGIONS

$$
\begin{aligned}
& \text { Example Evaluate } \begin{aligned}
& \int_{0}^{1} \int_{0}^{y} \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} z d z d x d y \\
&\left.=\int_{0}^{y \sqrt{1-y^{2}}} \frac{1}{2}\left(1-y^{2}\right) x\right]_{0}^{y} d y=\int_{0}^{1} \frac{1}{2}\left(1-y^{2}\right) y d y \\
&=\frac{1}{2} \int_{0}^{1}\left(y-y^{3}\right) d y=\frac{1}{8}
\end{aligned}
\end{aligned}
$$

