Course: Calculus (4)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.1]
DOUBLE INTEGRALS

THE AREA PROBLEM

Given a function f that is continuous and nonnegative on an interval $[a, b]$, find the area between the graph of f and the interval $[a, b]$ on the x-axis.

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}
$$

THE VOLUME PROBLEM

Given a function f of two variables that is continuous and nonnegative on a region R in the $x y$-plane, find the volume of the solid enclosed between the surface $z=f(x, y)$ and the region R.

We approximate the volume by using rectangular parallelepipeds.

$$
\begin{aligned}
V_{\mathrm{box}} & =\text { base area } \times \text { height } \\
& =\Delta A_{i j} \times f\left(x_{i}^{*}, y_{j}^{*}\right)
\end{aligned}
$$

THE VOLUME PROBLEM

$$
\begin{aligned}
V & \approx \sum_{i=1}^{n} \sum_{j=1}^{m} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta A_{i j} \\
V & =\lim _{\substack{n \rightarrow \infty \\
m \rightarrow \infty}}\left[\sum_{i=1}^{n} \sum_{j=1}^{m} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta A_{i j}\right]
\end{aligned}
$$

$$
V=\iint_{R} f(x, y) d A
$$

EVALUATING DOUBLE INTEGRALS

- The partial derivatives of a function $f(x, y)$ are calculated by holding one of the variables fixed and differentiating with respect to the other variable.
- Let us consider the reverse of this process, partial integration.

\checkmark The partial definite integral with respect to x.
\checkmark Is evaluated by holding y fixed

EVALUATING DOUBLE INTEGRALS

- The partial derivatives of a function $f(x, y)$ are calculated by holding one of the variables fixed and differentiating with respect to the other variable.
- Let us consider the reverse of this process, partial integration.

\checkmark The partial definite integral with respect to y.
\checkmark Is evaluated by holding x fixed
 and integrating with respect to y.

EVALUATING DOUBLE INTEGRALS

Example
(1) $\left.\int_{0}^{1} x y^{2} d x=y^{2} \int_{0}^{1} x d x=\frac{y^{2} x^{2}}{2}\right]_{0}^{1}=\frac{y^{2}}{2}$
(2) $\left.\int_{0}^{1} x y^{2} d y=x \int_{0}^{1} y^{2} d y=\frac{x y^{3}}{3}\right]_{0}^{1}=\frac{x}{3}$

NOTE - A partial definite integral with respect to x is a function of y and hence can be integrated with respect to y.

- A partial definite integral with respect to y can be integrated with respect to x.
- This two-stage integration process is called iterated (or repeated) integration.

EVALUATING DOUBLE INTEGRALS

$$
\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y
$$

$$
\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x
$$

EVALUATING DOUBLE INTEGRALS

- We introduce the following notation:

$$
\begin{aligned}
& \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y \\
& \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x
\end{aligned}
$$

- These integrals are called iterated integrals.

EVALUATING DOUBLE INTEGRALS

Example Evaluate $\int_{1}^{3} \int_{2}^{4}(40-2 x y) d y d x$
$\int_{1}^{3} \int_{2}^{4}(40-2 x y) d y d x=\int_{1}^{3}\left[\int_{2}^{4}(40-2 x y) d y\right] d x$

$$
\left.=\int_{1}^{3}\left(40 y-x y^{2}\right)\right]_{2}^{4} d x
$$

$$
\begin{aligned}
=\int_{1}^{3}[(160-16 x)-(80-4 x)] d x & =\int_{1}^{3}(80-12 x) d x \\
& =112
\end{aligned}
$$

EVALUATING DOUBLE INTEGRALS

Homework Evaluate $\int_{2}^{4} \int_{1}^{3}(40-2 x y) d x d y$
Fubini's Theorem
Let R be the rectangle defined by

$$
\begin{aligned}
R & =\{(x, y): a \leq x \leq b, c \leq y \leq d\} \\
& =[a, b] \times[c, d]
\end{aligned}
$$

If $f(x, y)$ is continuous on this rectangle, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

EVALUATING DOUBLE INTEGRALS

Example Use a double integral to find the volume of the solid that is bounded above by the plane $z=4-x-y$ and below by the rectangle $R=[0,1] \times[0,2]$.

PROPERTIES OF DOUBLE INTEGRALS

$$
\iint_{R} c f(x, y) d A=c \iint_{R} f(x, y) d A \quad \quad(c \text { constant })
$$

$$
\iint_{R}[f(x, y) \pm g(x, y)] d A=\iint_{R} f(x, y) d A \pm \iint_{R} g(x, y) d A
$$

$$
\iint_{R} f(x, y) d A=\iint_{R_{1}} f(x, y) d A+\iint_{R_{2}} f(x, y) d A
$$

PROPERTIES OF DOUBLE INTEGRALS

NOTE If $R=[a, b] \times[c, d]$ is a rectangular region, and $f(x, y)=g(x) h(y)$, then

$$
\iint_{R} f(x, y) d A=\iint_{R} g(x) h(y) d A=\left[\int_{a}^{b} g(x) d x\right]\left[\int_{c}^{d} h(y) d y\right]
$$

Example $\int_{0}^{1} \int_{0}^{2} e^{x+y} d x d y=\int_{0}^{1} \int_{0}^{2} e^{x} e^{y} d x d y$

$$
=\left(\int_{0}^{2} e^{x} d x\right)\left(\int_{0}^{1} e^{y} d y\right)=\left(e^{2}-1\right)(e-1)
$$

EXERCISE SET 14.1 QUESTION 33

Homework Evaluate the integral by choosing a convenient order of integration:

$$
\frac{1}{3 \pi}=\iint_{R} x \cos (x y) \cos ^{2}(\pi x) d A \quad ; \quad R=\left[0, \frac{1}{2}\right] \times[0, \pi]
$$

Course: Calculus (4)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.2]
DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

ITERATED INTEGRALS WITH NONCONSTANT LIMITS OF INTEGRATION

In this section we will see that double integrals over nonrectangular regions can often be evaluated as iterated integrals

$$
\text { Example } \begin{aligned}
\int_{0}^{1} \int_{-x}^{x^{2}} y^{2} x d y d x & \left.=\int_{0}^{1}\left[\int_{-x}^{x^{2}} y^{2} x d y\right] d x=\int_{0}^{1} \frac{x y^{3}}{3}\right]_{-x}^{x^{2}} d x \\
& \left.=\int_{0}^{1}\left(\frac{x^{7}}{3}+\frac{x^{4}}{3}\right) d x=\left(\frac{x^{8}}{24}+\frac{x^{5}}{15}\right)\right]_{0}^{1}=\frac{13}{120}
\end{aligned}
$$

ITERATED INTEGRALS WITH NONCONSTANT LIMITS OF INTEGRATION

Example $\int_{0}^{\pi / 3} \int_{0}^{\cos y} x \sin y d x d y=\int_{0}^{\pi / 3}\left[\int_{0}^{\cos y} x \sin y d x\right] d y$
By Substitution

Let $t=\cos y$
$\frac{d t}{d y}=-\sin y$
$d y=-\frac{d t}{\sin y}$
$y=\pi / 3 \quad t=1 / 2$
$y=0$
:---
$=\int_{0}^{\pi / 3} \frac{1}{2} \cos ^{2} y \sin y d y=-\frac{1}{2} \int_{1}^{1 / 2} t^{2} \sin y \frac{d t}{\sin y}$
:---

DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Type I Region

is bounded on the left and right by vertical lines $x=a$ and $x=b$ and is bounded below and above by continuous curves $y=g_{1}(x)$ and $y=g_{2}(x)$, where $g_{1}(x) \leq g_{2}(x)$ for $a \leq x \leq b$.

Type II Region

is bounded below and above by horizontal lines $y=c$ and $y=d$ and is bounded on the left and right by continuous curves $x=h_{1}(y)$ and $x=h_{2}(y)$ satisfying $h_{1}(y) \leq h_{2}(y)$ for $c \leq y \leq d$

DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

1) If R is a type I region on which $f(x, y)$ is continuous, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

2) If R is a type II region on which $f(x, y)$ is continuous, then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate $\iint_{R} x y d A$ over the region R enclosed between $y=\frac{1}{2} x, y=\sqrt{x}$,

$$
x=2 \text { and } x=4
$$

Type I Region

$$
\begin{aligned}
\iint_{R} x y d A & =\iint x y d y d x=\int_{2}^{4}\left[\int_{x / 2}^{\sqrt{x}} x y d y\right] d x \\
& \left.=\int_{2}^{4} \frac{x y^{2}}{2}\right]_{x / 2}^{\sqrt{x}} d x=\int_{2}^{4}\left(\frac{x^{2}}{2}-\frac{x^{3}}{8}\right) d x=\frac{11}{6}
\end{aligned}
$$

DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate $\iint_{R}\left(2 x-y^{2}\right) d A$ over the triangular region R enclosed between the lines $y=-x+1, y=x+1$, and $y=3$.

$$
\begin{aligned}
\iint_{R}\left(2 x-y^{2}\right) d A & =\iint\left(2 x-y^{2}\right) d x d y \\
& \left.=\int_{1}^{3} x^{2}-x y^{2}\right]_{1-y}^{y-1} d y \\
& =\int_{1}^{3}\left(2 y^{2}-2 y^{3}\right) d y=-\frac{68}{3}
\end{aligned}
$$

Type II Region

DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate $\iint_{R}\left(2 x-y^{2}\right) d A$ over the triangular region R enclosed between the lines $y=-x+1, y=x+1$, and $y=3$.

$$
\iint_{R}\left(2 x-y^{2}\right) d A
$$

Type I Region

DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate $\iint_{R}\left(2 x-y^{2}\right) d A$ over the triangular region R enclosed between the lines $y=-x+1, y=x+1$, and $y=3$.

$$
\iint_{R}\left(2 x-y^{2}\right) d A=\iint_{R_{1}}\left(2 x-y^{2}\right) d A+\iint_{R_{2}}\left(2 x-y^{2}\right) d A
$$

Type I Region

$$
=\int_{-2}^{0} \int_{-x+1}^{3}\left(2 x-y^{2}\right) d y d x+\int_{0}^{2} \int_{x+1}^{3}\left(2 x-y^{2}\right) d y d x \quad y=-x+1
$$

DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

Example Evaluate $\int_{0}^{2} \int_{y / 2}^{1} e^{x^{2}} d x d y$
Since there is no elementary antiderivative of $e^{x^{2}}$, the integral cannot be evaluated by performing the x-integration first.

We will try to evaluate this integral by expressing it as an equivalent iterated integral with the order of integration reversed.

DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

$$
\begin{aligned}
& \text { Example Evaluate } \int_{0}^{2} \int_{y / 2}^{1} e^{x^{2}} d x d y \\
& \int_{0}^{2} \int_{y / 2}^{1} e^{x^{2}} d x d y=\iint e^{x^{2}} d y d x=\int_{0}^{1}\left[\int_{0}^{2 x} e^{x^{2}} d y\right] d x \\
& \begin{array}{ll}
& \left.=\int_{0}^{1} e^{x^{2}} y\right]_{0}^{2 x} d x \\
\begin{array}{l}
\text { By Substitution } \\
\text { Let } t=x^{2}
\end{array} & \int_{0}^{1} 2 x e^{x^{2}} d x=\int_{0}^{1} e^{t} d t=e-1
\end{array}
\end{aligned}
$$

AREA CALCULATED AS A DOUBLE INTEGRAL

Example

Use a double integral to find the area of the region R enclosed between the parabola $y=\frac{1}{2} x^{2}$ and the line $y=2 x$.

$$
\text { area of } R=\iint_{R} 1 d A=\iint_{R} d A
$$

AREA CALCULATED AS A DOUBLE INTEGRAL

$$
\text { area of } R=\iint_{R} 1 d A=\iint_{R} d A
$$

Example Use a double integral to find the area of the region R enclosed between the parabola $y=\frac{1}{2} x^{2}$ and the line $y=2 x$.

$$
\text { Area of } \begin{aligned}
R & =\iint_{R} d A \quad \text { (Type II Region) } \\
& \left.=\int_{0}^{8} \int_{y / 2}^{\sqrt{2 y}} d x d y=\int_{0}^{8} x\right]_{y / 2}^{\sqrt{2 y}} d y \\
& =\int_{0}^{8}\left(\sqrt{2 y}-\frac{y}{2}\right) d y=\frac{16}{3}
\end{aligned}
$$

AREA CALCULATED AS A DOUBLE INTEGRAL

$$
\text { area of } R=\iint_{R} 1 d A=\iint_{R} d A
$$

Example Use a double integral to find the area of the region R enclosed between the parabola $y=\frac{1}{2} x^{2}$ and the line $y=2 x$.

$$
\text { Area of } \begin{aligned}
R & =\iint_{R} d A \quad \text { (Type I Region) } \\
& \left.=\int_{0}^{4} \int_{x^{2} / 2}^{2 x} d y d x=\int_{0}^{4} y\right]_{x^{2} / 2}^{2 x} d x \\
& =\int_{0}^{4}\left(2 x-\frac{x^{2}}{2}\right) d x=\frac{16}{3}
\end{aligned}
$$

EXERCISE SET 14.2

9. Let R be the region shown in the accompanying figure. Fill in the missing limits of integration.
(a) $\iint_{R} f(x, y) d A=\int_{\square}^{\square} \int_{\square}^{\square} f(x, y) d y d x$
(b) $\iint_{R} f(x, y) d A=\int_{\square}^{\square} \int_{\square}^{\square} f(x, y) d x d y$

Course: Calculus (4)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.3]
DOUBLE INTEGRALS IN POLAR COORDINATES

REVIEW OF POLAR COORDINATES

REVIEW OF POLAR COORDINATES

From Rectangular
To Polar
$r=\sqrt{x^{2}+y^{2}}$
$\tan \theta=\frac{y}{x}$

From Polar

To Rectangular

$$
\cos \theta=\frac{x}{r}, \quad \sin \theta=\frac{y}{r}
$$

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

SIMPLE POLAR REGIONS

- Some double integrals are easier to evaluate if the region of integration is expressed in polar coordinates.
- This is usually true if the region is bounded by any curve whose equation is simpler in polar coordinates than in rectangular coordinates.
- Example: Consider the quarter-disk $x^{2}+y^{2}=4$ in the first quadrant shown below.

```
Rectangular
Coordinates
\(0 \leq x \leq 2\)
\(0 \leq y \leq \sqrt{4-x^{2}}\)
```


$$
\begin{aligned}
& \begin{array}{c}
\text { Polar } \\
\text { Coordinates }
\end{array} \\
& 0 \leq r \leq 2 \\
& 0 \leq \theta \leq \pi / 2
\end{aligned}
$$

SIMPLE POLAR REGIONS

- Double integrals whose integrands involve $x^{2}+y^{2}$ also tend to be easier to evaluate in polar coordinates because this sum simplifies to r^{2} when the conversion formulas $x=r \cos \theta$ and $y=r \sin \theta$ are applied.
- The figure below shows a region R in a polar coordinate system that is enclosed between two rays, $\theta=\alpha$ and $\theta=\beta$, and two polar curves, $r=r_{1}(\theta)$ and $r=r_{2}(\theta)$.
- If the functions $r_{1}(\theta)$ and $r_{2}(\theta)$ are continuous and their graphs do not cross, then the region R is called a simple polar region.

DOUBLE INTEGRALS IN POLAR COORDINATES

NOTE A polar rectangle is a simple polar region for which the bounding polar curves are circular arcs.

Theorem If R is a simple polar region whose boundaries are the rays $\theta=\alpha$ and $\theta=\beta$ and the curves $r=r_{1}(\theta)$ and $r=r_{2}(\theta)$, and if $f(r, \theta)$ is continuous on R, then

$$
\iint_{R} f(r, \theta) d A=\int_{\alpha}^{\beta} \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(r, \theta) r d r d \theta
$$

DOUBLE INTEGRALS IN POLAR COORDINATES

Example Find the volume of the solid bounded by the cylinder $x^{2}+y^{2}=4$ and the plane $y+z=4$.

DOUBLE INTEGRALS IN POLAR COORDINATES

Example Find the volume of the solid bounded by the cylinder $x^{2}+y^{2}=4$ and the plane $y+z=4$.

$$
\begin{aligned}
V & =\iint_{R}(4-y) d A=\iint(4-r \sin \theta) r d r d \theta \\
& =\int_{0}^{2 \pi}\left[\int_{0}^{2}\left(4 r-r^{2} \sin \theta\right) d r\right] d \theta \\
& \left.=\int_{0}^{2 \pi}\left(2 r^{2}-\frac{1}{3} r^{3} \sin \theta\right)\right]_{0}^{2} d \theta=\int_{0}^{2 \pi}\left(8-\frac{8}{3} \sin \theta\right) d \theta \\
& \left.=\left(8 \theta+\frac{8}{3} \cos \theta\right)\right]_{0}^{2 \pi}=16 \pi
\end{aligned}
$$

DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(x^{2}+y^{2}\right)^{3 / 2} d y d x$

$$
\begin{aligned}
\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(x^{2}+y^{2}\right)^{3 / 2} d y d x & =\iint\left(r^{2}\right)^{3 / 2} r d r d \theta \\
& =\int_{0}^{\pi} \int_{0}^{1} r^{4} d r d \theta=\int_{0}^{\pi} \frac{1}{5} d \theta=\frac{\pi}{5}
\end{aligned}
$$

DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate $\iint_{R} \frac{1}{1+x^{2}+y^{2}} d A$ where R is the region in the first quadrant bounded by $y=0, y=x, x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

$$
\begin{aligned}
\iint_{R} \frac{1}{1+x^{2}+y^{2}} d A & =\iint \frac{1}{1+r^{2}} r d r d \theta \\
& =\int_{0}^{\pi / 4}\left[\int_{1}^{2} \frac{r}{1+r^{2}} d r\right] d \theta
\end{aligned}
$$

$$
\tan \theta=\frac{y}{x}=\frac{x}{x}=1
$$

$$
\theta=\frac{\pi}{4}
$$

DOUBLE INTEGRALS IN POLAR COORDINATES

Example Evaluate $\iint_{R} \frac{1}{1+x^{2}+y^{2}} d A$ where R is the region in the first quadrant bounded by $y=0, y=x, x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

$$
\begin{aligned}
\iint_{R} \frac{1}{1+x^{2}+y^{2}} d A & =\iint \frac{1}{1+r^{2}} r d r d \theta \\
& \left.=\int_{0}^{\pi / 4}\left[\frac{1}{2} \int_{1}^{2} \frac{2 r}{1+r^{2}} d r\right] d \theta=\int_{0}^{\pi / 4} \frac{1}{2} \ln \left|1+r^{2}\right|\right]_{1}^{2} d \theta \\
& =\int_{0}^{\pi / 4} \frac{1}{2} \ln \left(\frac{5}{2}\right) d \theta=\frac{\pi}{8} \ln \left(\frac{5}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =\frac{y}{x}=\frac{x}{x}=1 \\
\theta & =\frac{\pi}{4}
\end{aligned}
$$

DOUBLE INTEGRALS IN POLAR COORDINATES

Example Use a double-integral to show that the area of the region R shown is $\frac{9 \pi}{2}$.
Area of $R=\iint_{R} d A=\iint r d r d \theta$

DOUBLE INTEGRALS IN POLAR COORDINATES

Example Use a double-integral to show that the area of the region R shown is $\frac{9 \pi}{2}$.

$$
\text { Area of } \begin{aligned}
R & =\iint_{R} d A=\iint_{0}^{3} r d r d \theta \\
& \left.=\int_{-\pi / 3}^{2 \pi / 3}\left[\int_{0}^{3} r d r\right] d \theta=\int_{-\pi / 3}^{2 \pi / 3} \frac{r^{2}}{2}\right]_{0}^{3} d \theta \\
& \left.=\int_{-\pi / 3}^{2 \pi / 3} \frac{9}{2} d \theta=\frac{9}{2} \theta\right]_{-\pi / 3}^{2 \pi / 3}=\frac{9 \pi}{2}
\end{aligned}
$$

DOUBLE INTEGRALS IN POLAR COORDINATES

$$
\begin{aligned}
& \text { Example Evaluate } \int_{0}^{\infty} e^{-x^{2}} d x=I \\
& \begin{aligned}
I^{2}=\left(\int_{0}^{\infty} e^{-x^{2}} d x\right)^{2} & =\left(\int_{0}^{\infty} e^{-x^{2}} d x\right)\left(\int_{0}^{\infty} e^{-x^{2}} d x\right) \\
& =\left(\int_{0}^{\infty} e^{-x^{2}} d x\right)\left(\int_{0}^{\infty} e^{-y^{2}} d y\right) \\
& =\int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}} e^{-y^{2}} d x d y=\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y
\end{aligned}
\end{aligned}
$$

DOUBLE INTEGRALS IN POLAR COORDINATES

$$
\begin{aligned}
& \text { Example Evaluate } \int_{0}^{\infty} e^{-x^{2}} d x=I \\
& I^{2}=\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\int e^{-r^{2}} r d r d \theta \\
& \quad=\int_{0}^{\pi / 2}\left[\int_{0}^{\infty} r e^{-r^{2}} d r\right] d \theta \\
& \left.\quad=\int_{0}^{\pi / 2}\left[\int_{0}^{\infty} \frac{1}{2} e^{-t} d t\right] d \theta=\int_{0}^{\infty} \frac{-1}{2} e^{-t}\right]_{0}^{\infty} d \theta=\int_{0}^{\infty} \frac{1}{2} d \theta=\frac{\pi}{4}
\end{aligned}
$$

Course: Calculus (4)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.4]
SURFACE AREA; PARAMETRIC SURFACES

SURFACE AREA FOR SURFACES OF THE FORM $z=f(x, y)$

- Consider a surface of the form $z=f(x, y)$ defined over a region R in the $x y$-plane.
- We will assume that f has continuous first partial derivatives at the interior points of R.
- The surface area of that portion of the surface $z=f(x, y)$ that lies above the
 rectangle R in the $x y$-plane is given by

$$
S=\iint_{R} \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} d A
$$

SURFACE AREA FOR SURFACES OF THE FORM $z=f(x, y)$

Example

Find the surface area of that portion of the

$$
S=\iint_{R} \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} d A
$$ surface $z=\sqrt{4-x^{2}}$ that lies above the rectangle R in the $x y$-plane whose coordinates satisfy $0 \leq x \leq 1$ and $0 \leq y \leq 4$.

$$
\begin{aligned}
S & =\int_{0}^{1} \int_{0}^{4} \sqrt{\left(\frac{-2 x}{2 \sqrt{4-x^{2}}}\right)^{2}+0^{2}+1} d y d x \\
& =\int_{0}^{1} \int_{0}^{4} \sqrt{\frac{x^{2}}{4-x^{2}}+1} d y d x=\int_{0}^{1} \int_{0}^{4} \sqrt{\frac{4}{4-x^{2}}} d y d x
\end{aligned}
$$

SURFACE AREA FOR SURFACES OF THE FORM $z=f(x, y)$

Example

Find the surface area of that portion of the

$$
S=\iint_{R} \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} d A
$$ surface $z=\sqrt{4-x^{2}}$ that lies above the rectangle R in the $x y$-plane whose coordinates satisfy $0 \leq x \leq 1$ and $0 \leq y \leq 4$.

$$
\begin{aligned}
S & =\int_{0}^{1} \int_{0}^{4} \frac{2}{\sqrt{4-x^{2}}} d y d x=\int_{0}^{1} \frac{8}{\sqrt{4-x^{2}}} d x \\
& \left.=8 \sin ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{1}=8\left(\frac{\pi}{6}-0\right)=\frac{4 \pi}{3}
\end{aligned}
$$

SURFACE AREA FOR SURFACES OF THE FORM $z=f(x, y)$

Example

Find the surface area of the portion of the paraboloid

$$
S=\iint_{R} \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} d A
$$ $z=x^{2}+y^{2}$ below the plane $z=1$.

$$
S=\iint_{R} \sqrt{(2 x)^{2}+(2 y)^{2}+1} d A
$$

$$
=\iint_{R} \sqrt{4\left(x^{2}+y^{2}\right)+1} d A
$$

$$
=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{4 r^{2}+1} r d r d \theta
$$

By Substitution:
Let $t=4 r^{2}+1$

SURFACE AREA FOR SURFACES OF THE FORM $z=f(x, y)$

Example

Find the surface area of the portion of the paraboloid

$$
S=\iint_{R} \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} d A
$$ $z=x^{2}+y^{2}$ below the plane $z=1$.

$$
\begin{aligned}
S & \left.=\int_{0}^{2 \pi}\left[\int_{1}^{5} \frac{1}{8} \sqrt{t} d t\right] d \theta=\int_{0}^{2 \pi} \frac{1}{12} \sqrt{t^{3}}\right]_{1}^{5} d \theta \\
& =\int_{0}^{2 \pi} \frac{5 \sqrt{5}-1}{12} d \theta=\frac{1}{6}(5 \sqrt{5}-1) \pi
\end{aligned}
$$

PARAMETRIC REPRESENTATION OF SURFACES

We have seen that curves in 2 -space can be represented by two equations involving one parameter, say

$$
x=x(t) \quad, \quad y=y(t) \quad, \quad a \leq t \leq b
$$

Example The position $P(x, y)$ of a particle moving in the $x y$-plane is given by the equations and parameter interval

$$
x=\sqrt{t}, \quad y=t, \quad t \geq 0
$$

We try to identify the path by eliminating t between the equations:

$$
y=t=(\sqrt{t})^{2}=x^{2}
$$

PARAMETRIC REPRESENTATION OF SURFACES

Example The counter-clockwise orientation parametric equations of the circle $x^{2}+y^{2}=a^{2}$ are

GeoGebra:

Curve($3 \cos (t), 3 \sin (t), t, 0,2 p i)$ $t=\frac{3 \pi}{2}$

PARAMETRIC REPRESENTATION OF SURFACES

Curves in 3 -space can be represented by three equations involving one parameter, say
$x=x(t) \quad, \quad y=y(t) \quad, \quad z=z(t), \quad a \leq t \leq b$
Example Describe the parametric curve represented by the equations

$$
\begin{aligned}
& x=10 \cos t \\
& y=10 \sin t \\
& z=t
\end{aligned}
$$

GeoGebra:
Curve ($10 \cos (t), 10 \sin (t), t, t, 0,6 \pi)$

PARAMETRIC REPRESENTATION OF SURFACES

Surfaces in 3-space can be represented parametrically by three equations involving two parameters, say

$$
x=x(u, v) \quad, \quad y=y(u, v) \quad, \quad z=z(u, v) \quad, \quad \begin{aligned}
& a \leq u \leq b \\
& c \leq v \leq d
\end{aligned}
$$

Example Consider the paraboloid $z=4-x^{2}-y^{2}$. One way to parametrize this surface is to take

$$
\begin{aligned}
& x=u \\
& y=v \\
& z=4-u^{2}-v^{2}
\end{aligned}
$$

GeoGebra:

1) $4-x^{\wedge} 2-y^{\wedge} 2, x^{\wedge} 2+y^{\wedge} 2<=4$
2) Surface $\left(u, v, 4-u^{2}-v^{2}, u,-2,2, v,-2,2\right)$

PARAMETRIC REPRESENTATION OF SURFACES

Example Consider the paraboloid $z=4-x^{2}-y^{2}$. Another way to parametrize this surface is to take

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=4-r^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \leq r \leq 2 \\
& 0 \leq \theta \leq 2 \pi
\end{aligned}
$$

GeoGebra:
Surface $\left(r \cos (\theta), r \sin (\theta), 4-r^{2}, r, 0,2, \theta, 0,2 \pi\right)$

PARAMETRIC REPRESENTATION OF SURFACES

Example Find parametric equations for the portion of the right circular cylinder $x^{2}+z^{2}=9$ for which $0 \leq y \leq 5$ in terms of the parameters u and v.

$$
\begin{aligned}
& x=3 \cos u \\
& y=v \\
& z=3 \sin u
\end{aligned}
$$

GeoGebra:
Surface ($3 \cos (u), v, 3 \sin (u), u, 0,2 \pi, v, 0,5)$

REPRESENTING SURFACES OF REVOLUTION PARAMETRICALLY

Suppose that we want to find parametric equations for the surface generated by revolving the plane curve $y=f(x)$ about the x-axis for example. Then the surface can be represented parametrically as

$$
x=u \quad y=f(u) \cos v \quad z=f(u) \sin v
$$

Example Find parametric equations for the surface generated by revolving the curve $y=\sqrt{x}$ about the x-axis.

$$
\begin{array}{ll}
x=u & 0 \leq u \leq 4 \\
y=\sqrt{u} \cos v & 0 \leq v \leq 2 \pi \\
z=\sqrt{u} \sin v & 0 \leq
\end{array}
$$

REPRESENTING SURFACES OF REVOLUTION PARAMETRICALLY

Example Find parametric equations for the surface generated by revolving the curve $y=\sqrt{u}$ about the x-axis.

$$
\begin{aligned}
& x=u \quad y=\sqrt{u} \cos v \\
& z=\sqrt{u} \sin v \\
& 0 \leq u \leq 4 \\
& 0 \leq v \leq 2 \pi
\end{aligned}
$$

GeoGebra:

Step [1] $f(x)=\operatorname{sqrt}(x)$
Step [2] Surface(u, $f(u) \cos (v), f(u) \sin (v), u, 0,4, v, 0,2 \pi)$
GeoGebra:
Step [1] $f(x)=\operatorname{sqrt}(x)$
Step [2] Surface (f, 2 π, xAxis)

Course: Calculus (4)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.5]
Triple Integrals

evaluating Triple INTEGRALS OVER RECTANGULAR BOXES

Let G be the rectangular box defined by the inequalities

$$
a \leq x \leq b \quad, \quad c \leq y \leq d \quad, \quad k \leq z \leq \ell
$$

If f is continuous on the region G, then

$$
\iiint_{G} f(x, y, z) d V=\int_{a}^{b} \int_{c}^{d} \int_{k}^{l} f(x, y, z) d z d y d x
$$

Six orders of integration are possible for the iterated integral:

$$
\begin{array}{lll}
d x d y d z, & d y d z d x, & d z d x d y \\
d x d z d y, & d z d y d x, & d y d x d z
\end{array}
$$

evaluating Triple INTEGRALS OVER RECTANGULAR BOXES

Example Evaluate the triple integral $\iiint_{G} 12 x y^{2} z^{3} d V$ over the rectangular box

$$
\begin{aligned}
& G=[-1,2] \times[0,3] \times[0,2] \\
& \begin{aligned}
\iiint_{G} 12 x y^{2} z^{3} d V & =\int_{-1}^{2} \int_{0}^{3} \int_{0}^{2} 12 x y^{2} z^{3} d z d y d x=\int_{-1}^{2} \int_{0}^{3}\left[\int_{0}^{2} 12 x y^{2} z^{3} d z\right] d y d x \\
& =\int_{-1}^{3} \int_{0}^{3} 48 x y^{2} d y d x=\int_{-1}^{2} 432 x d x=648
\end{aligned} \\
& \iiint_{G} 12 x y^{2} z^{3} d V=12\left[\int_{-1}^{2} x d x\right]\left[\int_{0}^{3} y^{2} d y\right]\left[\int_{0}^{2} z^{3} d z\right]=648
\end{aligned}
$$

PROPERTIES OF TRIPLE INTEGRALS

$$
\iiint_{G} c f(x, y, z) d V=c \iiint_{G} f(x, y, z) d V \text { where } c \text { is a constant. }
$$

$$
\iiint_{G}(f \pm g) d V=\iiint_{G} f d V \pm \iiint_{G} g d V
$$

If the region G is subdivided into two subregions G_{1} and G_{2}, then

$$
\iiint_{G} f d V=\iiint_{G_{1}} f d V+\iiint_{G_{2}} f d V
$$

EVALUATING TRIPLE INTEGRALS OVER MORE GENERAL REGIONS

$$
\begin{aligned}
& \text { Example Evaluate } \int_{0}^{1} \int_{0}^{y} \int_{0}^{1} \int_{0}^{1-y^{2}} z d z d x d y \\
& = \\
& \left.=\int_{0}^{y \sqrt{1-y^{2}}} \frac{1}{2}\left(1-y^{2}\right) x\right]_{0}^{y} d y=\int_{0}^{1} \frac{1}{2}\left(1-y^{2}\right) y d y \\
& \\
& =\frac{1}{2} \int_{0}^{1}\left(y-y^{3}\right) d y=\frac{1}{8}
\end{aligned}
$$

EVALUATING TRIPLE INTEGRALS OVER MORE GENERAL REGIONS

Let G be a simple $x y$-solid with upper surface z $=g_{2}(x, y)$ and lower surface $z=g_{1}(x, y)$, and let R be the projection of G on the $x y$-plane. If $f(x, y, z)$ is continuous on G, then

$$
\iiint_{G} f(x, y, z) d V=\iint_{R}\left[\int_{g_{1}(x, y)}^{g_{2}(x, y)} f(x, y, z) d z\right] d A
$$

EVALUATING TRIPLE INTEGRALS OVER MORE GENERAL REGIONS

Example Let G be the wedge in the first octant that is cut from the cylindrical solid $y^{2}+z^{2} \leq 1$ by the planes $y=x$ and $x=0$. Evaluate

$$
\begin{aligned}
\iiint_{G} z d V & =\iint_{R}^{[}\left[\int_{0}^{\sqrt{1-y^{2}}} z d z\right] d A \\
& \left.=\iint_{R}^{[}\left[\frac{1}{2} z^{2}\right]_{0}^{\sqrt{1-y^{2}}}\right] d A=\iint_{R} \frac{1}{2}\left(1-y^{2}\right) d A \\
& =\int_{0}^{1} \int_{0}^{y} \frac{1}{2}\left(1-y^{2}\right) d x d y=\frac{1}{8}
\end{aligned}
$$

VOLUME CALCULATED AS A TRIPLE INTEGRAL

NOTE Volume of $G=\iiint_{G} d V$
Example Use a triple integral to find the volume of the solid within the cylinder $x^{2}+y^{2}=9$ and between the planes $z=1$ and $x+z=5$.

$$
\begin{aligned}
& \text { Volume of } G=\iiint_{G} d V=\iint_{R}\left[\int_{1}^{5-x} d z\right] d A=\iint_{R}(4-x) d A \\
& =\int_{0}^{2 \pi} \int_{0}^{3}(4-r \cos \theta) r d r d \theta=36 \pi
\end{aligned}
$$

Cylindrical Coordinates

Course: Calculus (4)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.6] \times
TRIPLE INTEGRALS IN CYLINDRICAL AND SPHERICAL COORDINATES

Course: Calculus (4)

Chapter: [14]
MULTIPLE INTEGRALS

Section: [14.7]
CHANGE OF VARIABLES IN MULTIPLE INTEGRALS; JACOBIANS

CHANGE OF VARIABLE IN A SINGLE INTEGRAL

- In many instances it is convenient to make a substitution, or change of variable, in an integral to evaluate it.
- If f is continuous and $x=g(u)$ has a continuous derivative and $d x=g^{\prime}(u) d u$, then

$$
\int_{a}^{b} f(x) d x=\int_{c}^{d} f(g(u)) g^{\prime}(u) d u=\int_{c}^{d} f(g(u)) J(u) d u
$$

- For example, to evaluate $\int_{0}^{2} \sqrt{4-x^{2}} d x$ we use the substitution $x=2 \sin \theta$.

$$
\int_{0}^{2} \sqrt{4-x^{2}} d x=\int_{0}^{\pi / 2}(2 \cos \theta)(2 \cos \theta) d \theta=4 \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta=\pi
$$

CHANGE OF VARIABLE IN A SINGLE INTEGRAL

- In this section we will discuss a general method for evaluating double integrals by substitution.
- The polar coordinate substitution is a special case of a more general substitution method for double integrals, a method that pictures changes in variables as transformations of regions.
- We will consider parametric equations of the form

$$
x=x(u, v) \quad, \quad y=(u, v)
$$

- Parametric equations of this type associate points in the $x y$-plane with points in the $u v$-plane.

TRANSFORMATIONS OF THE PLANE

- If we think of the pair of numbers (u, v) as an input, then the two equations, in combination, produce a unique output (x, y), and hence define a function T that associates points in the $x y$-plane with points in the $u v$-plane.
- This function is described by the formula $T(u, v)=(x(u, v), y(u, v))$.
- We call T a transformation from the $u v$-plane to the $x y$-plane.

TRANSFORMATIONS OF THE PLANE

- These equations, which can often be obtained by solving for u and v in terms of x and y, define a transformation from the $x y$-plane to the $u v$-plane that maps the image of (u, v) under T back into (u, v). This transformation is denoted by T^{-1} and is called the inverse of T.

> Because there are four variables involved, a three-dimensional figure is not very useful for describing the transformation geometrically. The idea here is to use the two planes to get the four dimensions needed.

TRANSFORMATIONS OF THE PLANE

- One way to visualize the geometric effect of a transformation T is to determine the images in the $x y$-plane of the vertical and horizontal lines in the $u v$-plane.
- Sets of points in the $x y$-plane that are images of horizontal lines (v constant) are called constant \boldsymbol{v}-curves, and sets of points that are images of vertical lines (u constant) are called constant \boldsymbol{u}-curves.

TRANSFORMATIONS OF THE PLANE

Example Let T be the transformation from the $u v$ - plane to the $x y$-plane defined by the equations

$$
x=\frac{1}{4}(u+v) \quad, \quad y=\frac{1}{2}(u-v)
$$

a) Find $T(1,3)$.

Solution
Substituting $u=1$ and $v=3$ in the equations yields $T(1,3)=(1,-1)$.

TRANSFORMATIONS OF THE PLANE

Example Let T be the transformation from the $u v$ - plane to the $x y$-plane defined by the equations

$$
x=\frac{1}{4}(u+v) \quad, \quad y=\frac{1}{2}(u-v)
$$

b) Sketch the constant v-curves corresponding to $v=-2,-1,0,1,2$.
c) Sketch the constant u-curves corresponding to $u=-2,-1,0,1,2$.

Solution In these parts it will be convenient to express the transformation equations with u and v as functions of x and y.

$$
\begin{aligned}
& 4 x=u+v \\
& 2 y=u-v \\
& \frac{2 y=2 x+y}{u}+\quad
\end{aligned} \begin{aligned}
& 4 x=u+v \\
& \frac{2 y=u-v}{v=2 x-y}
\end{aligned}
$$

TRANSFORMATIONS OF THE PLANE

Example Let T be the transformation from the $u v$ - plane to the $x y$-plane defined by the equations

$$
x=\frac{1}{4}(u+v) \quad, \quad y=\frac{1}{2}(u-v)
$$

b) Sketch the constant v-curves corresponding to $v=-2,-1,0,1,2$.
c) Sketch the constant u-curves corresponding to $u=-2,-1,0,1,2$.

Solution In these parts it will be convenient to express the transformation equations with u and v as functions of x and y.

The constant v-curves

$$
\begin{array}{ll}
-2=2 x-y & 0=2 x-y \\
-1=2 x-y & 1=2 x-y \\
& 2=2 x-y
\end{array}
$$

$$
\begin{aligned}
& u=2 x+y \\
& v=2 x-y
\end{aligned}
$$

TRANSFORMATIONS OF THE PLANE

Example Let T be the transformation from the $u v$ - plane to the $x y$-plane defined by the equations

$$
x=\frac{1}{4}(u+v) \quad, \quad y=\frac{1}{2}(u-v)
$$

b) Sketch the constant v-curves corresponding to $v=-2,-1,0,1,2$.
c) Sketch the constant u-curves corresponding to $u=-2,-1,0,1,2$.

Solution In these parts it will be convenient to express the transformation equations with u and v as functions of x and y.

The constant \boldsymbol{u}-curves

$$
\begin{array}{ll}
-2=2 x+y & 0=2 x+y \\
-1=2 x+y & 1=2 x+y \\
& 2=2 x+y
\end{array}
$$

$$
\begin{aligned}
& u=2 x+y \\
& v=2 x-y
\end{aligned}
$$

TRANSFORMATIONS OF THE PLANE

Example Let T be the transformation from the $u v$ - plane to the $x y$-plane defined by the equations

$$
x=\frac{1}{4}(u+v) \quad, \quad y=\frac{1}{2}(u-v)
$$

b) Sketch the constant v-curves corresponding to $v=-2,-1,0,1,2$.
c) Sketch the constant u-curves corresponding to $u=-2,-1,0,1,2$.

Solution

$$
\begin{aligned}
& u=2 x+y \\
& v=2 x-y
\end{aligned}
$$

TRANSFORMATIONS OF THE PLANE

Example Let T be the transformation from the $u v$ - plane to the $x y$-plane defined by the equations

$$
x=\frac{1}{4}(u+v) \quad, \quad y=\frac{1}{2}(u-v)
$$

d) Sketch the image under T of the square region in the $u v$-plane bounded by the lines $u=-2, u=2, v=-2$, and $v=2$.

Solution

NOTE
Square Area $=16$
Diamond Area $=4$

$$
d x d y=\frac{1}{4} d u d v
$$

JACOBIANS IN TWO VARIABLES

If $x=g(u, v)$ and $y=h(u, v)$, then the Jacobian of x and y with respect to u and v, denoted by $\partial(x, y) / \partial(u, v)$, is

$$
J(u, v)=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial y}{\partial u} \frac{\partial x}{\partial v} .
$$

Example In the previous example, $x=\frac{1}{4}(u+v)$ and $y=\frac{1}{2}(u-v)$. Then

$$
J(u, v)=\left|\begin{array}{cc}
\frac{1}{4} & \frac{1}{4} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right|=-\frac{1}{8}-\frac{1}{8}=-\frac{1}{4}
$$

JACOBIANS IN TWO VARIABLES

Example Find the Jacobian for the change of variables defined by

$$
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta
$$

$$
\begin{aligned}
J(r, \theta) & =\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right| \\
& =r \cos ^{2} \theta+r \sin ^{2} \theta \\
& =r
\end{aligned}
$$

$\therefore d x d y=r d r d \theta$

CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Let R be a simple region in the $x y$-plane and let S be a simple region in the $u v$ -plane. Let T from S to R be given by

$$
T(u, v)=(x(u, v), y(u, v))
$$

where $x(u, v)$ and $y(u, v)$ have continuous first partial derivatives. Assume that T is one-to-one except possibly on the boundary of S. If f is continuous on R and $\frac{\partial(x, y)}{\partial(u, v)}$ is nonzero on S, then

$$
\iint_{R} f(x, y) d A_{x y}=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A_{u v}
$$

CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Example a) Let R be the region bounded by the lines

$$
x-y=0, \quad x-y=1, \quad x+y=1, \quad \text { and } \quad x+y=3
$$

as shown in the figure. Find a transformation T from a region S to R such that is S a rectangular region in the $u v$-plane.

$$
\begin{array}{ll}
u=x-y & 0 \leq u \leq 1 \\
v=x+y & 1 \leq v \leq 3
\end{array}
$$

To find the transformation T :

$$
\begin{gathered}
u=x-y \\
v=x+y \\
\hline x=\frac{1}{2}(v+u)
\end{gathered} \quad \begin{gathered}
u=x-y \\
\frac{v=x+y}{}- \\
y=\frac{1}{2}(v-u)
\end{gathered}
$$

CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Example b) Evaluate $\iint_{R} \frac{x-y}{x+y} d A$

$$
\begin{aligned}
& J(u, v)=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{-1}{2} & \frac{1}{2}
\end{array}\right|=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)=\frac{1}{2} \\
& \iint_{R} \frac{x-y}{x+y} d A=\iint_{S} \frac{u}{v}|J(u, v)| d A_{u v}=\frac{1}{2} \int_{1}^{3} \int_{0}^{1} \frac{u}{v} d u d v \\
&=\frac{1}{4} \int_{1}^{3} \frac{1}{v} d v=\frac{1}{4} \ln 3
\end{aligned}
$$

CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Example Let R be the region enclosed by the lines $y=\frac{1}{2} x$ and $y=x$, and the hyperbolas $y=\frac{1}{x}$ and $y=\frac{2}{x}$. Evaluate

$$
\left.\begin{array}{c}
\frac{y}{x}=\frac{1}{2} \\
\frac{y}{x}=1
\end{array}\right\} u=\frac{y}{x} \quad \begin{gathered}
\iint_{R} e^{x y} d A \\
\left.\begin{array}{l}
x y=1 \\
x y=2
\end{array}\right\} \quad \frac{1}{2} \leq u \leq 1
\end{gathered} \quad v=x y \quad 1 \leq v \leq 2
$$

CHANGE OF VARIABLES IN DOUBLE INTEGRALS

$\begin{array}{lll}\text { Example } & \text { Let } R \text { be the region enclosed by the lines } y=\frac{1}{2} x \text { and } \\ y=x \text {, and the hyperbolas } y=\frac{1}{x} \text { and } y=\frac{2}{x} \text {. Evaluate } & u=\frac{y}{x} \quad \frac{1}{2} \leq u \leq 1 \\ y=x y & 1 \leq v \leq 2\end{array}$

$$
\begin{array}{rlr}
\iint_{R} e^{x y} d A & u v=\frac{y}{x} \cdot x y=y^{2} \Rightarrow y=\sqrt{u v} \\
J(u, v)=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right| & =\left|\begin{array}{cc}
u \\
-\frac{1}{2} \sqrt{\frac{v}{u^{3}}} & \frac{1}{2} \frac{1}{\sqrt{u v}} \\
\frac{1}{2} \sqrt{\frac{v}{u}} & \frac{1}{2} \sqrt{\frac{u}{v}}
\end{array}\right| & \frac{u}{v}=\frac{y / x}{x y}=1 / x^{2} \Rightarrow x=\sqrt{\frac{v}{u}} \\
& =-\frac{1}{4} \frac{1}{u}-\frac{1}{4} \frac{1}{u}=-\frac{1}{2} \frac{1}{u} &
\end{array}
$$

CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Example Let R be the region enclosed by the lines $y=\frac{1}{2} x$ and $y=x$, and the hyperbolas $y=\frac{1}{x}$ and $y=\frac{2}{x}$. Evaluate

$$
\iint_{R} e^{x y} d A
$$

$$
\iint_{R} e^{x y} d A=\iint_{S} e^{v}|J(u, v)| d A_{u v}=\frac{1}{2} \int_{1}^{2} \int_{1 / 2}^{1} \frac{1}{u} e^{v} d u d v
$$

$$
\begin{aligned}
& u=\frac{y}{x} \quad \frac{1}{2} \leq u \leq 1 \\
& v=x y \quad 1 \leq v \leq 2 \\
& y=\sqrt{u v} \\
& x=\sqrt{\frac{v}{u}} \\
& J(u, v)=-\frac{1}{2} \frac{1}{u}
\end{aligned}
$$

$$
=\frac{1}{2}\left[\int_{1}^{2} e^{v} d v\right]\left[\int_{1 / 2}^{1} \frac{1}{u} d u\right]=\frac{1}{2} e(e-1) \ln 2
$$

CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Example Let R be the region bounded by the line $x+2 y=2 \pi, \quad y$-axis, and x-axis. Evaluate

$$
\iint_{R} \sin (x+2 y) \cos (x-2 y) d A
$$

Since it is not easy to integrate $\sin (x+2 y) \cos (x-2 y)$, we make a change of variables suggested by:

CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Example Let R be the region bounded by the line $x+2 y=2 \pi, \quad y$-axis, and x-axis. Evaluate

$$
\iint_{R} \sin (x+2 y) \cos (x-2 y) d A
$$

$$
x=\frac{1}{2}(u+v) \quad y=\frac{1}{4}(u-v)
$$

$$
J(u, v)=\left|\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{4} & -\frac{1}{4}
\end{array}\right|=-\frac{1}{8}-\frac{1}{8}=-\frac{1}{4}
$$

CHANGE OF VARIABLES IN DOUBLE INTEGRALS

Example Let R be the region bounded by the line $x+2 y=2 \pi, \quad y$-axis, and x-axis. Evaluate

$$
\begin{aligned}
& \iint_{R} \sin (x+2 y) \cos (x-2 y) d A \\
= & \iint_{S} \sin (u) \cos (v)|J(u, v)| d A_{u v} \\
= & \frac{1}{4} \int_{0}^{2 \pi} \int_{-u}^{u} \sin (u) \cos (v) d v d u=\frac{1}{4} \int_{0}^{2 \pi}[\sin (u) \sin (v)]{ }_{-u}^{u} d u=\frac{1}{2} \int_{0}^{2 \pi} \sin ^{2}(u) d u=\frac{\pi}{2}
\end{aligned}
$$

Course: Calculus (4)

Chapter: [14]
MULTIPLE INTEGRALS

Section: $[14.8]^{\times}$
CENTERS OF GRAVITY USING MULTIPLE INTEGRALS

