Course: Calculus (4)

<u>Chapter: [14]</u> MULTIPLE INTEGRALS

Section: [14.1] DOUBLE INTEGRALS

# THE AREA PROBLEM

Given a function f that is continuous and nonnegative on an interval [a, b], find the area between the graph of fand the interval [a, b] on the x —axis.

$$A \approx \sum_{k=1}^{n} f(x_k^*) \Delta x_k$$
$$A = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k^*) \Delta x_k$$
$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k^*) \Delta x_k$$



# THE VOLUME PROBLEM

Given a function f of two variables that is continuous and nonnegative on a region R in the xy —plane, find the volume of the solid enclosed between the surface z = f(x, y) and the region R.

We approximate the volume by using rectangular parallelepipeds.

$$V_{\text{box}} = \text{base area} \times \text{height}$$
  
=  $\Delta A_{ij} \times f(x_i^*, y_j^*)$ 



$$\Delta y_j$$

$$\Delta x_i \quad \Delta A_{ij} = \Delta x_i \Delta y_j$$

# **THE VOLUME PROBLEM**

$$V \approx \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_i^*, y_j^*) \Delta A_{ij}$$

$$V = \lim_{\substack{n \to \infty \\ m \to \infty}} \left[ \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_i^*, y_j^*) \Delta A_{ij} \right]$$

$$\Delta y_j$$

$$\Delta x_i \quad \Delta A_{ij} = \Delta x_i \Delta y_j$$

$$V = \iint_R f(x, y) dA$$

- The partial derivatives of a function f(x, y) are calculated by holding one of the variables fixed and differentiating with respect to the other variable.
- Let us consider the reverse of this process, partial integration.

$$\int_{a}^{b} f(x,y)dx$$

- ✓ The partial definite integral with respect to *x*.
- ✓ Is evaluated by holding y fixed and integrating with respect to x.



- The partial derivatives of a function f(x, y) are calculated by holding one of the variables fixed and differentiating with respect to the other variable.
- Let us consider the reverse of this process, partial integration.

$$\int_{c}^{d} f(x,y) dy$$

- ✓ The partial definite integral with respect to *y*.
- ✓ Is evaluated by holding x fixed and integrating with respect to y.



Example (1) 
$$\int_{0}^{1} xy^{2} dx = y^{2} \int_{0}^{1} x dx = \frac{y^{2}x^{2}}{2} \Big|_{0}^{1} = \frac{y^{2}}{2}$$
  
(2)  $\int_{0}^{1} xy^{2} dy = x \int_{0}^{1} y^{2} dy = \frac{xy^{3}}{3} \Big|_{0}^{1} = \frac{x}{3}$ 

- **NOTE** A partial definite integral with respect to x is a function of y and hence can be integrated with respect to y.
  - A partial definite integral with respect to y can be integrated with respect to x.
  - This two-stage integration process is called **iterated** (or *repeated*) **integration**.







• We introduce the following notation:

$$\int_{c}^{d} \int_{a}^{b} f(x, y) dx dy = \int_{c}^{d} \left[ \int_{a}^{b} f(x, y) dx \right] dy$$

$$\int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx = \int_{a}^{b} \left[ \int_{c}^{d} f(x, y) \, dy \right] dx$$

• These integrals are called *iterated integrals*.



Homework Evaluate 
$$\int_{2}^{4} \int_{1}^{3} (40 - 2xy) dx dy = 112$$
  
Fubini's Theorem  
Let R be the rectangle defined by  

$$R = \{(x, y) : a \le x \le b, c \le y \le d\}$$

$$= [a, b] \times [c, d]$$
If  $f(x, y)$  is continuous on this rectangle, then  

$$\iint_{R} f(x, y) dA = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$



**Example** Use a double integral to find the volume of the solid that is bounded above by the plane z = 4 - x - y and below by the rectangle  $R = [0, 1] \times [0, 2]$ .

$$V = \iint_{R} (4 - x - y) dA = \int_{0}^{1} \int_{0}^{2} (4 - x - y) dy dx = \int_{0}^{1} \left[ \int_{0}^{2} (4 - x - y) dy \right] dx$$
$$= \int_{0}^{1} \left( 4y - xy - \frac{y^{2}}{2} \right) \Big]_{0}^{2} dx$$
$$= \int_{0}^{1} (6 - 2x) dx = 5 = \int_{0}^{2} \int_{0}^{1} (4 - x - y) dx dy$$

# **PROPERTIES OF DOUBLE INTEGRALS**

$$\iint_{R} cf(x,y)dA = c \iint_{R} f(x,y)dA \qquad (c \text{ constant})$$

$$\iint_{R} [f(x,y) \pm g(x,y)] dA = \iint_{R} f(x,y) dA \pm \iint_{R} g(x,y) dA$$

$$\iint\limits_R f(x,y)dA = \iint\limits_{R_1} f(x,y)dA + \iint\limits_{R_2} f(x,y)dA$$



# **PROPERTIES OF DOUBLE INTEGRALS**

**NOTE** If  $R = [a, b] \times [c, d]$  is a rectangular region, and f(x, y) = g(x)h(y), then

$$\iint_{R} f(x,y)dA = \iint_{R} g(x)h(y)dA = \left[\int_{a}^{b} g(x)dx\right] \left[\int_{c}^{d} h(y)dy\right]$$

Example 
$$\int_{0}^{1} \int_{0}^{2} e^{x+y} dx dy = \int_{0}^{1} \int_{0}^{2} e^{x} e^{y} dx dy$$
  
$$= \left(\int_{0}^{2} e^{x} dx\right) \left(\int_{0}^{1} e^{y} dy\right) = (e^{2} - 1)(e - 1)$$

# **EXERCISE SET 14.1 QUESTION 33**

**Homework** Evaluate the integral by choosing a convenient order of integration:



Course: Calculus (4)

<u>Chapter: [14]</u> MULTIPLE INTEGRALS

Section: [14.2] DOUBLE INTEGRALS OVER NONRECTANGULAR REGIONS

## **ITERATED INTEGRALS WITH NONCONSTANT LIMITS OF INTEGRATION**

In this section we will see that double integrals over nonrectangular regions can often be evaluated as iterated integrals

Example 
$$\int_{0}^{1} \int_{-x}^{x^2} y^2 x \, dy \, dx = \int_{0}^{1} \left[ \int_{-x}^{x^2} y^2 x \, dy \right] dx = \int_{0}^{1} \left[ \frac{xy^3}{3} \right]_{-x}^{x^2} dx$$

$$= \int_{0}^{1} \left(\frac{x^{7}}{3} + \frac{x^{4}}{3}\right) dx = \left(\frac{x^{8}}{24} + \frac{x^{5}}{15}\right) \Big|_{0}^{1} = \frac{13}{120}$$

# **ITERATED INTEGRALS WITH NONCONSTANT LIMITS OF INTEGRATION**



#### **Type I Region**

is bounded on the left and right by vertical lines x = a and x = b and is bounded below and above by continuous curves  $y = g_1(x)$  and  $y = g_2(x)$ , where  $g_1(x) \le g_2(x)$  for  $a \le x \le b$ .



#### **Type II Region**

is bounded below and above by horizontal lines y = c and y = dand is bounded on the left and right by continuous curves  $x = h_1(y)$  and  $x = h_2(y)$  satisfying  $h_1(y) \le h_2(y)$ for  $c \le y \le d$ 



1) If R is a **type I region** on which f(x, y) is continuous, then

$$\iint\limits_{R} f(x,y)dA = \int\limits_{a}^{b} \int\limits_{g_{1}(x)}^{g_{2}(x)} f(x,y)dydx$$

2) If *R* is a **type II region** on which f(x, y) is continuous, then

$$\iint\limits_{R} f(x,y)dA = \int\limits_{c}^{d} \int\limits_{h_{1}(y)}^{h_{2}(y)} f(x,y)dxdy$$



**Example** Evaluate  $\iint_{R} (2x - y^2) dA$  over the triangular region *R* enclosed between the lines y = -x + 1, y = x + 1, and y = 3.

$$\iint_{R} (2x - y^2) dA = \int \int (2x - y^2) dx dy$$

$$= \int_{R}^{3} (2x - y^2) dx dy$$

$$(-2, 3)$$

$$= \int_{V}^{y} (-2, 3) = \int_{V}^{y} (-2, 3) dx dy$$

y = -x + 1(x = 1 - y)

3(2,3)

y = x + 1(x = y - 1)

Х

$$= \int_{1}^{3} (2y^2 - 2y^3) dy = -\frac{68}{3}$$

**Example** Evaluate  $\iint (2x - y^2) dA$  over the triangular region R enclosed between the lines y = -x + 1, y = x + 1, and y = 3. **Type I Region**  $\iint (2x - y^2) dA$ (-2, 3) 3 y = 3 (2, 3)y = -x + 1(x = 1 - y)y = x + 1(x = y - 1)Х

**Example** Evaluate  $\iint (2x - y^2) dA$  over the triangular region R enclosed between the lines y = -x + 1, y = x + 1, and y = 3. **Type I Region**  $\iint_{R} (2x - y^2) dA = \iint_{R_1} (2x - y^2) dA + \iint_{R_2} (2x - y^2) dA$  $= \int_{-2}^{0} \int_{-x+1}^{3} (2x - y^2) dy dx + \int_{0}^{2} \int_{x+1}^{3} (2x - y^2) dy dx \quad y = -x+1$ 

0

2

**Example** Evaluate  $\int_{0}^{2} \int_{1}^{1} \int_{0}^{1}$ 

$$\int_{0}^{2} \int_{y/2}^{1} e^{x^{2}} dx dy$$
$$y = 2x$$

Since there is no elementary antiderivative of  $e^{x^2}$ , the integral cannot be evaluated by performing the *x* —integration first.

We will try to evaluate this integral by expressing it as an equivalent iterated integral with the order of integration reversed.



**Example** Evaluate

2

0

$$\int_{0}^{2} \int_{y/2}^{1} e^{x^2} dx dy$$

$$\int_{y/2}^{1} e^{x^{2}} dx dy = \int \int e^{x^{2}} dy dx = \int_{0}^{1} \left[ \int_{0}^{2x} e^{x^{2}} dy \right]$$

 $= \int_{0}^{1} e^{x^{2}} y \Big]_{0}^{2x} dx$ By Substitution Let  $t = x^{2}$  $= \int_{0}^{1} 2xe^{x^{2}} dx = \int_{0}^{1} e^{t} dt = e - 1$ 



dx

# **AREA CALCULATED AS A DOUBLE INTEGRAL**

#### Example

Use a double integral to find the area of the region *R* enclosed between the parabola  $y = \frac{1}{2}x^2$  and the line y = 2x.

area of 
$$R = \iint_R 1 \, dA = \iint_R \, dA$$



Cylinder with base R and height 1

# **AREA CALCULATED AS A DOUBLE INTEGRAL**

area of 
$$R = \iint_R 1 \, dA = \iint_R \, dA$$

**Example** Use a double integral to find the area of the region *R* enclosed between the parabola  $y = \frac{1}{2}x^2$  and the line y = 2x.





# **AREA CALCULATED AS A DOUBLE INTEGRAL**

area of 
$$R = \iint_R 1 \, dA = \iint_R \, dA$$

**Example** Use a double integral to find the area of the region *R* enclosed between the parabola  $y = \frac{1}{2}x^2$  and the line y = 2x.

Area of 
$$R = \iint_R dA$$
 (Type I Region)  

$$= \int_0^4 \int_{x^2/2}^{2x} dy dx = \int_0^4 y]_{x^2/2}^{2x} dx$$

$$= \int_0^4 \left(2x - \frac{x^2}{2}\right) dx = \frac{16}{3}$$



# **EXERCISE SET 14.2**

9. Let *R* be the region shown in the accompanying figure. Fill in the missing limits of integration. (a)  $\iint_{R} f(x, y) dA = \int_{\Box}^{\Box} \int_{\Box}^{\Box} f(x, y) dy dx$ (b)  $\iint_{R} f(x, y) dA = \int_{\Box}^{\Box} \int_{\Box}^{\Box} f(x, y) dx dy$ 



Course: Calculus (4)

<u>Chapter: [14]</u> MULTIPLE INTEGRALS

Section: [14.3] DOUBLE INTEGRALS IN POLAR COORDINATES

# **REVIEW OF POLAR COORDINATES**



## **REVIEW OF POLAR COORDINATES**



# **SIMPLE POLAR REGIONS**

- Some double integrals are easier to evaluate if the region of integration is expressed in polar coordinates.
- This is usually true if the region is bounded by any curve whose equation is simpler in polar coordinates than in rectangular coordinates.
- **Example:** Consider the quarter-disk  $x^2 + y^2 = 4$  in the first quadrant shown below.



# **SIMPLE POLAR REGIONS**

- Double integrals whose integrands involve  $x^2 + y^2$  also tend to be easier to evaluate in polar coordinates because this sum simplifies to  $r^2$  when the conversion formulas  $x = r \cos \theta$  and  $y = r \sin \theta$  are applied.
- The figure below shows a region R in a polar coordinate system that is enclosed between two rays,  $\theta = \alpha$  and  $\theta = \beta$ , and two polar curves,  $r = r_1(\theta)$  and  $r = r_2(\theta)$ .
- If the functions  $r_1(\theta)$  and  $r_2(\theta)$  are continuous and their graphs do not cross, then the region R is called a *simple polar region*.



# **DOUBLE INTEGRALS IN POLAR COORDINATES**

**NOTE** A **polar rectangle** is a simple polar region for which the bounding polar curves are circular arcs.

**Theorem** If *R* is a simple polar region whose boundaries are the rays  $\theta = \alpha$  and  $\theta = \beta$ and the curves  $r = r_1(\theta)$  and  $r = r_2(\theta)$ , and if  $f(r, \theta)$  is continuous on *R*, then

$$\iint_{R} f(r,\theta) dA = \int_{\alpha}^{\beta} \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(r,\theta) r dr d\theta$$





**Example** Find the volume of the solid bounded by the cylinder  $x^2 + y^2 = 4$  and the plane y + z = 4.



**Example** Find the volume of the solid bounded by the cylinder  $x^2 + y^2 = 4$  and the plane y + z = 4.

$$V = \iint_{R} (4 - y) dA = \iint_{R} (4 - r \sin \theta) r dr d\theta$$
  
=  $\int_{0}^{2\pi} \left[ \int_{0}^{2} (4r - r^{2} \sin \theta) dr \right] d\theta$   
=  $\int_{0}^{2\pi} \left( 2r^{2} - \frac{1}{3}r^{3} \sin \theta \right) \Big]_{0}^{2} d\theta = \int_{0}^{2\pi} \left( 8 - \frac{8}{3} \sin \theta \right) d\theta$   
=  $\left( 8\theta + \frac{8}{3} \cos \theta \right) \Big]_{0}^{2\pi} = 16\pi$ 

▲ V



X

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} (x^2 + y^2)^{3/2} dy dx = \int_{0}^{\pi} \int_{0}^{1} (r^2)^{3/2} r dr d\theta$$
$$= \int_{0}^{\pi} \int_{0}^{1} r^4 dr d\theta = \int_{0}^{\pi} \frac{1}{5} d\theta = \frac{\pi}{5}$$

**Example** Evaluate 
$$\iint_{R} \frac{1}{1+x^2+y^2} dA$$
 where *R* is the region in the

y = x

= 1

 $\tan\theta =$ 

first quadrant bounded by y = 0, y = x,  $x^2 + y^2 = 1$  and  $x^2 + y^2 = 4$ .

$$\iint_{R} \frac{1}{1+x^{2}+y^{2}} dA = \int_{0}^{\pi/4} \int_{1+r^{2}}^{1} r dr d\theta$$
$$= \int_{0}^{\pi/4} \left[ \int_{1}^{2} \frac{r}{1+r^{2}} dr \right] d\theta$$

**Example** Evaluate  $\iint_{R} \frac{1}{1+x^2+y^2} dA$  where *R* is the region in the

first quadrant bounded by y = 0, y = x,  $x^2 + y^2 = 1$  and  $x^2 + y^2 = 4$ .

$$\iint\limits_{R} \frac{1}{1+x^2+y^2} dA = \int \int \frac{1}{1+r^2} r dr d\theta$$
$$\pi/4 \int \frac{\pi}{4} \int \frac{\pi}{4} \int \frac{\pi}{4} d\theta$$

$$= \int_{0}^{\pi/4} \left[ \frac{1}{2} \int_{1}^{2} \frac{2r}{1+r^{2}} dr \right] d\theta = \int_{0}^{\pi/4} \frac{1}{2} \ln|1+r^{2}| \Big]_{1}^{2} d\theta$$
$$= \int_{0}^{\pi/4} \frac{1}{2} \ln\left(\frac{5}{2}\right) d\theta = \frac{\pi}{8} \ln\left(\frac{5}{2}\right)$$

$$y = x$$

$$1 \quad 2$$

$$\tan \theta = \frac{y}{x} = \frac{x}{x} = 1$$

$$\theta = \frac{\pi}{4}$$

**Example** Use a double-integral to show that the area of the region R shown is  $\frac{9\pi}{2}$ .

Area of 
$$R = \iint_R dA = \int \int r dr d\theta$$



**Example** Use a double-integral to show that the area of the region R shown is  $\frac{9\pi}{2}$ .

Area of 
$$R = \iint_{R} dA = \int_{0}^{3} \int_{0}^{3} r dr d\theta$$
  
$$= \int_{-\pi/3}^{2\pi/3} \left[ \int_{0}^{3} r dr \right] d\theta = \int_{-\pi/3}^{2\pi/3} \frac{r^{2}}{2} \Big]_{0}^{3} d\theta$$
$$= \int_{-\pi/3}^{2\pi/3} \frac{9}{2} d\theta = \frac{9}{2} \theta \Big]_{-\pi/3}^{2\pi/3} = \frac{9\pi}{2}$$



 $\infty$ 

**Example** Evaluate  $\int_{0}^{\infty} e^{-x^2} dx = I$ 

$$I^{2} = \left(\int_{0}^{\infty} e^{-x^{2}} dx\right)^{2} = \left(\int_{0}^{\infty} e^{-x^{2}} dx\right) \left(\int_{0}^{\infty} e^{-x^{2}} dx\right)$$
$$= \left(\int_{0}^{\infty} e^{-x^{2}} dx\right) \left(\int_{0}^{\infty} e^{-y^{2}} dy\right)$$
$$= \int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}} e^{-y^{2}} dx dy = \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dx dy$$

**Example** Evaluate  $\int_{0}^{\infty} e^{-x^2} dx = I$ 

$$I^{2} = \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dx dy = \int \int e^{-r^{2}} r dr d\theta$$

$$= \int_{0}^{\pi/2} \left[ \int_{0}^{\infty} r e^{-r^{2}} dr \right] d\theta \qquad \text{By substitution. Let } t = r^{2}.$$
$$= \int_{0}^{\pi/2} \left[ \int_{0}^{\infty} \frac{1}{2} e^{-t} dt \right] d\theta = \int_{0}^{\pi/2} \frac{-1}{2} e^{-t} \Big]_{0}^{\infty} d\theta = \int_{0}^{\pi/2} \frac{1}{2} d\theta = \frac{\pi}{4}$$



Course: Calculus (4)

<u>Chapter: [14]</u> MULTIPLE INTEGRALS

SURFACE AREA; PARAMETRIC SURFACES

- Consider a surface of the form z = f(x, y)
   defined over a region R in the xy —plane.
- We will assume that *f* has continuous first partial derivatives at the interior points of *R*.
- The surface area of that portion of the surface z = f(x, y) that lies above the rectangle R in the xy —plane is given by

$$S = \iint_{R} \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} + 1} \, dA$$



#### Example

Find the surface area of that portion of the surface  $z = \sqrt{4 - x^2}$  that lies above the rectangle R in the xy –plane whose coordinates satisfy  $0 \le x \le 1$  and  $0 \le y \le 4$ .  $S = \int_{-\infty}^{1} \int_{-\infty}^{4} \sqrt{\left(\frac{-2x}{2\sqrt{4-x^{2}}}\right)^{2} + 0^{2} + 1 \, dy dx}$ 

$$S = \iint_{R} \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} + 1} \, dA$$



#### Example

Find the surface area of that portion of the surface  $z = \sqrt{4 - x^2}$  that lies above the rectangle *R* in the *xy* –plane whose coordinates

satisfy  $0 \le x \le 1$  and  $0 \le y \le 4$ .

$$S = \int_{0}^{1} \int_{0}^{4} \frac{2}{\sqrt{4 - x^2}} dy dx = \int_{0}^{1} \frac{8}{\sqrt{4 - x^2}} dx$$

$$= 8\sin^{-1}\left(\frac{x}{2}\right)\Big]_{0}^{1} = 8\left(\frac{\pi}{6} - 0\right) = \frac{4\pi}{3}$$

$$S = \iint_{R} \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} + 1} \, dA$$



#### Example

()

Find the surface area of the portion of the paraboloid

 $z = x^2 + y^2$  below the plane z = 1.

$$S = \iint_{R} \sqrt{(2x)^2 + (2y)^2 + 1} \, dA$$

$$S = \iint_{R} \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} + 1 \, dA}$$



+1

#### Example

Find the surface area of the portion of the paraboloid

 $z = x^2 + y^2$  below the plane z = 1.

$$S = \int_{0}^{2\pi} \left[ \int_{1}^{5} \frac{1}{8} \sqrt{t} \, dt \right] d\theta = \int_{0}^{2\pi} \frac{1}{12} \sqrt{t^{3}} \bigg|_{1}^{5} d\theta$$

$$= \int_{0}^{2\pi} \frac{5\sqrt{5}-1}{12} d\theta = \frac{1}{6} (5\sqrt{5}-1)\pi$$

$$S = \iint_{R} \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} + 1} \, dA$$



We have seen that curves in 2-space can be represented by two equations involving one parameter, say

$$x = x(t) , \quad y = y(t) , \quad a \le t \le b \quad y \quad y = x^2, x \ge 0$$
  
Example The position  $P(x, y)$  of a particle moving in the  $xy$ -plane is given by the equations and parameter interval  $x = \sqrt{t}$ ,  $y = t$ ,  $t \ge 0$   
We try to *identify the path* by eliminating  $t$  between the equations:  

$$y = t = (\sqrt{t})^2 = x^2$$

t = 0

**Example** The *counter-clockwise* orientation parametric equations of the



Curves in 3-space can be represented by three equations involving one parameter, say

$$x = x(t)$$
 ,  $y = y(t)$  ,  $z = z(t)$  ,  $a \le t \le b$ 

z = t

**Example** Describe the parametric curve represented by the equations  $x = 10 \cos t$  $y = 10 \sin t$ 



#### **GeoGebra:**

Curve(10cos(t), 10sin(t), t, t, 0,  $6\pi$ )

Surfaces in 3-space can be represented parametrically by three equations involving two parameters, say

$$x = x(u,v)$$
,  $y = y(u,v)$ ,  $z = z(u,v)$ ,  $a \le u \le b$   
 $c \le v \le d$ 

**Example** Consider the paraboloid  $z = 4 - x^2 - y^2$ . One way to parametrize this surface is to take

$$x = u$$
  

$$y = v$$
  

$$z = 4 - u^2 - v^2$$

GeoGebra:



 $u^2 + v^2 < 4$ 

**Example** Consider the paraboloid  $z = 4 - x^2 - y^2$ . Another way to parametrize this surface is to take

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = 4 - r^2$$



 $\begin{array}{l} 0 \leq r \leq 2 \\ 0 \leq \theta \leq 2\pi \end{array}$ 

#### **GeoGebra:** Surface( $r \cos(\theta)$ , $r \sin(\theta)$ , $4 - r^2$ , r, 0, 2, $\theta$ , 0, $2\pi$ )

**Example** Find parametric equations for the portion of the right circular cylinder  $x^2 + z^2 = 9$  for which  $0 \le y \le 5$  in terms of the parameters u and v.

$$x = 3 \cos u$$
$$y = v$$
$$z = 3 \sin u$$



#### GeoGebra: Surface(3cos(u), v, 3sin(u), u,0,2π, v,0,5)

#### **REPRESENTING SURFACES OF REVOLUTION PARAMETRICALLY**

Suppose that we want to find parametric equations for the surface generated by revolving the plane curve y = f(x) about the x —axis for example. Then the surface can be represented parametrically as

$$x = u$$
  $y = f(u) \cos v$   $z = f(u) \sin v$ 

**Example** Find parametric equations for the surface generated by revolving the curve  $y = \sqrt{x}$  about the x —axis.

$$\begin{array}{ll} x = u & & 0 \leq u \leq 4 \\ y = \sqrt{u} \cos v & & 0 \leq v \leq 2\pi \\ z = \sqrt{u} \sin v & & 0 \leq v \leq 2\pi \end{array}$$

# **REPRESENTING SURFACES OF REVOLUTION PARAMETRICALLY**

**Example** Find parametric equations for the surface generated by revolving the curve  $y = \sqrt{u}$  about the x —axis.

$$x = u \qquad y = \sqrt{u}\cos v \qquad z = \sqrt{u}\sin v \qquad \begin{array}{l} 0 \le u \le 4 \\ 0 \le v \le 2\pi \end{array}$$

#### **GeoGebra:**

Step[1] f(x) = sqrt(x)
Step[2] Surface(u, f(u)cos(v), f(u)sin(v), u,0,4, v,0,  $2\pi$ )

#### **GeoGebra:**

```
Step [1] f(x) = sqrt(x)
Step [2] Surface(f, 2\pi, xAxis)
```

Course: Calculus (4)

<u>Chapter: [14]</u> MULTIPLE INTEGRALS

Section: [14.5] Triple Integrals

# **EVALUATING TRIPLE INTEGRALS OVER RECTANGULAR BOXES**

Let G be the rectangular box defined by the inequalities

$$a \leq x \leq b$$
 ,  $c \leq y \leq d$  ,  $k \leq z \leq \ell$ 

If f is continuous on the region G, then

$$\iiint_{G} f(x, y, z) dV = \int_{a}^{b} \int_{c}^{d} \int_{k}^{\ell} f(x, y, z) dz dy dx$$

Six orders of integration are possible for the iterated integral:

 $dx dy dz, \quad dy dz dx, \quad dz dx dy$  $dx dz dy, \quad dz dy dx, \quad dy dx dz$ 

## **EVALUATING TRIPLE INTEGRALS OVER RECTANGULAR BOXES**

**Example** Evaluate the triple integral  $\iiint_{G} 12xy^2z^3dV$  over the rectangular box  $G = [-1,2] \times [0,3] \times [0,2]$ 

$$\iiint_{G} 12xy^{2}z^{3}dV = \int_{-1}^{2} \int_{0}^{3} \int_{0}^{2} 12xy^{2}z^{3}dzdydx = \int_{-1}^{2} \int_{0}^{3} \left[ \int_{0}^{2} 12xy^{2}z^{3}dz \right] dydx$$
$$= \int_{-1}^{2} \int_{0}^{3} 48xy^{2}dydx = \int_{-1}^{2} 432xdx = 648$$
$$\iiint_{G} 12xy^{2}z^{3}dV = 12 \left[ \int_{-1}^{2} xdx \right] \left[ \int_{0}^{3} y^{2}dy \right] \left[ \int_{0}^{2} z^{3}dz \right] = 648$$

# **PROPERTIES OF TRIPLE INTEGRALS**

$$\iiint_G cf(x, y, z)dV = c \iiint_G f(x, y, z)dV \quad \text{where } c \text{ is a constant.}$$

$$\iiint_G (f \pm g) dV = \iiint_G f dV \pm \iiint_G g dV$$

If the region G is subdivided into two subregions  $G_1$  and  $G_2$ , then

$$\iiint_{G} f dV = \iiint_{G_{1}} f dV + \iiint_{G_{2}} f dV$$



## **EVALUATING TRIPLE INTEGRALS OVER MORE GENERAL REGIONS**

**Example** Evaluate 
$$\int_{0}^{1} \int_{0}^{y\sqrt{1-y^2}} \int_{0}^{z} dz dx dy$$

$$\int_{0}^{1} \int_{0}^{y} \int_{0}^{1-y^{2}} z \, dz \, dx \, dy = \int_{0}^{1} \int_{0}^{y} \frac{1}{2} z^{2} \bigg|_{0}^{\sqrt{1-y^{2}}} \, dx \, dy = \int_{0}^{1} \int_{0}^{y} \frac{1}{2} (1-y^{2}) \, dx \, dy$$

$$= \int_{0}^{1} \frac{1}{2} (1 - y^2) x \Big]_{0}^{y} dy = \int_{0}^{1} \frac{1}{2} (1 - y^2) y dy$$

$$=\frac{1}{2}\int_{0}^{1}(y-y^{3})dy = \frac{1}{8}$$

#### **EVALUATING TRIPLE INTEGRALS OVER MORE GENERAL REGIONS**

Let *G* be a simple xy —solid with upper surface  $z = g_2(x, y)$  and lower surface  $z = g_1(x, y)$ , and let *R* be the projection of *G* on the xy —plane. If f(x, y, z) is continuous on *G*, then

$$\iiint_{G} f(x, y, z) dV = \iint_{R} \left[ \int_{g_{1}(x, y)}^{g_{2}(x, y)} f(x, y, z) dz \right] dA$$



#### **EVALUATING TRIPLE INTEGRALS OVER MORE GENERAL REGIONS**

**Example** Let G be the wedge in the first octant that is cut from the cylindrical solid  $y^2 + z^2 \le 1$  by the planes y = x and x = 0. Evaluate



# **VOLUME CALCULATED AS A TRIPLE INTEGRAL**

**NOTE** Volume of 
$$G = \iiint_G dV$$

**Example** Use a triple integral to find the volume of the solid within the cylinder  $x^2 + y^2 = 9$  and between the planes z = 1 and x + z = 5.

Volume of 
$$G = \iiint_{G} dV = \iint_{R} \left[ \int_{1}^{5-x} dz \right] dA = \iint_{R} (4-x) dA$$
$$= \int_{0}^{2\pi} \int_{0}^{3} (4-r\cos\theta) r dr d\theta = 36\pi$$

#### **Cylindrical Coordinates**



Course: Calculus (4)

<u>Chapter: [14]</u> MULTIPLE INTEGRALS

Section: [14.6] × TRIPLE INTEGRALS IN CYLINDRICAL AND SPHERICAL COORDINATES Course: Calculus (4)

<u>Chapter: [14]</u> MULTIPLE INTEGRALS

Section: [14.7] CHANGE OF VARIABLES IN MULTIPLE INTEGRALS; JACOBIANS

# CHANGE OF VARIABLE IN A SINGLE INTEGRAL

- In many instances it is convenient to make a **substitution**, or **change of variable**, in an integral to evaluate it.
- If f is continuous and x = g(u) has a continuous derivative and dx = g'(u)du, then

$$\int_{a}^{b} f(x)dx = \int_{c}^{d} f(g(u))g'(u)du = \int_{c}^{d} f(g(u))J(u)du$$

• For example, to evaluate  $\int_0^2 \sqrt{4 - x^2} dx$  we use the substitution  $x = 2 \sin \theta$ .

$$\int_{0}^{2} \sqrt{4 - x^{2}} dx = \int_{0}^{\pi/2} (2\cos\theta)(2\cos\theta)d\theta = 4 \int_{0}^{\pi/2} \cos^{2}\theta \, d\theta = \pi$$

# CHANGE OF VARIABLE IN A SINGLE INTEGRAL

- In this section we will discuss a general method for evaluating double integrals by **substitution**.
- The **polar coordinate substitution** is a special case of a more general substitution method for double integrals, a method that pictures changes in variables as transformations of regions.
- We will consider parametric equations of the form

$$x = x(u, v)$$
 ,  $y = (u, v)$ 

• Parametric equations of this type associate points in the xy –plane with points in the uv –plane.

# **TRANSFORMATIONS OF THE PLANE**

- If we think of the pair of numbers (u, v) as an input, then the two equations, in combination, produce a unique output (x, y), and hence define a function T that associates points in the xy —plane with points in the uv —plane.
- This function is described by the formula T(u, v) = (x(u, v), y(u, v)).
- We call T a **transformation** from the uv –plane to the xy –plane.



These equations, which can often be obtained by solving for u and v in terms of x and y, define a transformation from the xy —plane to the uv —plane that maps the image of (u, v) under T back into (u, v). This transformation is denoted by T<sup>-1</sup> and is called **the inverse of** T.

Because there are four variables involved, a three-dimensional figure is not very useful for describing the transformation geometrically. The idea here is to use the two planes to get the four dimensions needed.

- One way to visualize the geometric effect of a transformation T is to determine the images in the xy —plane of the vertical and horizontal lines in the uv —plane.
- Sets of points in the xy –plane that are images of horizontal lines (v constant) are called **constant** v –**curves**, and sets of points that are images of vertical lines

(*u* constant) are called **constant** *u* –curves.



**Example** Let *T* be the transformation from the uv —plane to the xy —plane defined by the equations

$$x = \frac{1}{4}(u+v)$$
,  $y = \frac{1}{2}(u-v)$ 

a) Find T(1,3).

#### Solution

Substituting u = 1 and v = 3 in the equations yields T(1,3) = (1,-1).

**Example** Let *T* be the transformation from the uv —plane to the xy —plane defined by the equations

$$x = \frac{1}{4}(u+v)$$
,  $y = \frac{1}{2}(u-v)$ 

- b) Sketch the constant v –curves corresponding to v = -2, -1, 0, 1, 2.
- c) Sketch the constant u –curves corresponding to u = -2, -1, 0, 1, 2.
  - **Solution** In these parts it will be convenient to express the transformation equations with u and v as functions of x and y.

$$4x = u + v$$

$$2y = u - v +$$

$$u = 2x + y$$

$$4x = u + v$$

$$2y = u - v -$$

$$v = 2x - y$$

**Example** Let *T* be the transformation from the uv —plane to the xy —plane defined by the equations

$$x = \frac{1}{4}(u+v)$$
,  $y = \frac{1}{2}(u-v)$ 

- b) Sketch the constant v –curves corresponding to v = -2, -1, 0, 1, 2.
- c) Sketch the constant u –curves corresponding to u = -2, -1, 0, 1, 2.
  - **Solution** In these parts it will be convenient to express the transformation equations with u and v as functions of x and y.

The constant v –curves

$$-2 = 2x - y \qquad 0 = 2x - y$$
$$-1 = 2x - y \qquad 1 = 2x - y$$
$$2 = 2x - y$$

u = 2x + yv = 2x - y

**Example** Let *T* be the transformation from the uv —plane to the xy —plane defined by the equations

$$x = \frac{1}{4}(u+v)$$
,  $y = \frac{1}{2}(u-v)$ 

- b) Sketch the constant v –curves corresponding to v = -2, -1, 0, 1, 2.
- c) Sketch the constant u –curves corresponding to u = -2, -1, 0, 1, 2.
  - **Solution** In these parts it will be convenient to express the transformation equations with u and v as functions of x and y.

The constant u –curves

$$-2 = 2x + y \qquad 0 = 2x + y$$
$$-1 = 2x + y \qquad 1 = 2x + y$$
$$2 = 2x + y$$

$$u = 2x + y$$
$$v = 2x - y$$

**Example** Let *T* be the transformation from the uv —plane to the xy —plane defined by the equations

$$x = \frac{1}{4}(u+v)$$
,  $y = \frac{1}{2}(u-v)$ 

b) Sketch the constant v –curves corresponding to v = -2, -1, 0, 1, 2.

c) Sketch the constant u –curves corresponding to u = -2, -1, 0, 1, 2.



u = 2x + yv = 2x - y

**Example** Let *T* be the transformation from the uv —plane to the xy —plane defined by the equations

$$x = \frac{1}{4}(u+v)$$
,  $y = \frac{1}{2}(u-v)$ 

d) Sketch the image under T of the square region in the uv –plane bounded by the lines u = -2, u = 2, v = -2, and v = 2.



#### **JACOBIANS IN TWO VARIABLES**

If x = g(u, v) and y = h(u, v), then the **Jacobian** of x and y with respect to u and v, denoted by  $\partial(x, y)/\partial(u, v)$ , is

$$J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v}.$$

**Example** In the previous example,  $x = \frac{1}{4}(u+v)$  and  $y = \frac{1}{2}(u-v)$ . Then

$$J(u,v) = \begin{vmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = -\frac{1}{8} - \frac{1}{8} = -\frac{1}{4}$$

# **JACOBIANS IN TWO VARIABLES**

**Example** Find the Jacobian for the change of variables defined by

$$x = r \cos \theta$$
 and  $y = r \sin \theta$ 

$$J(r,\theta) = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix}$$
$$= r \cos^2 \theta + r \sin^2 \theta$$
$$= r$$

 $\therefore dxdy = r \, drd\theta$ 



Let *R* be a simple region in the xy —plane and let *S* be a simple region in the uv —plane. Let *T* from *S* to *R* be given by

$$T(u,v) = (x(u,v), y(u,v))$$

where x(u, v) and y(u, v) have continuous first partial derivatives. Assume that T is

one-to-one except possibly on the boundary of S. If f is continuous on R and  $\frac{\partial(x,y)}{\partial(u,v)}$  is

nonzero on *S*, then

$$\iint_{R} f(x,y) dA_{xy} = \iint_{S} f(x(u,v), y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| dA_{uv}$$

**Example** a) Let R be the region bounded by the lines x - y = 0, x - y = 1, x + y = 1, and x + y = 3as shown in the figure. Find a transformation T from a region S to Rsuch that is S a rectangular region in the uv –plane. x - y = 0 $u = x - y \qquad 0 \le u \le 1$ x - y = 1v = x + y  $1 \le v \le 3$ R To find the transformation T: х u = x - y v = x + y + u = x - y v = x + y x + y = 1**▲** *v* u = 3u = 1

v = 1

v = 0

S

$$x = \frac{1}{2}(v+u)$$
  $y = \frac{1}{2}(v-u)$ 

**Example** b) Evaluate 
$$\iint_R \frac{x-y}{x+y} dA$$

$$J(u,v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{vmatrix} = \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) - \left(\frac{1}{2}\right) \left(\frac{-1}{2}\right) = \frac{1}{2}$$

$$u = x - y$$
$$v = x + y$$
$$x = \frac{1}{2}(v + u)$$
$$y = \frac{1}{2}(v - u)$$

$$\iint_{R} \frac{x - y}{x + y} \, dA = \iint_{S} \frac{u}{v} |J(u, v)| \, dA_{uv} = \frac{1}{2} \int_{1}^{3} \int_{0}^{1} \frac{u}{v} \, du dv$$
$$= \frac{1}{4} \int_{1}^{3} \frac{1}{v} \, dv = \frac{1}{4} \ln 3$$

**Example** Let *R* be the region enclosed by the lines  $y = \frac{1}{2}x$  and

$$y = x$$
, and the hyperbolas  $y = \frac{1}{x}$  and  $y = \frac{2}{x}$ . Evaluate

$$\iint_{R} e^{xy} dA$$

$$\frac{y}{x} = \frac{1}{2}$$

$$\frac{y}{x} = 1$$

$$u = \frac{y}{x}$$

$$\frac{1}{2} \le u \le 1$$

$$\begin{array}{c} xy = 1 \\ xy = 2 \end{array} \right\} \quad v = xy \qquad 1 \le v \le 2$$



Example Let *R* be the region enclosed by the lines 
$$y = \frac{1}{2}x$$
 and  
 $y = x$ , and the hyperbolas  $y = \frac{1}{x}$  and  $y = \frac{2}{x}$ . Evaluate  

$$\int_{R} e^{xy} dA$$
 $u = \frac{y}{x}$   $\frac{1}{2} \le u \le 1$ 
 $v = xy$   $1 \le v \le 2$ 

$$\int_{R} e^{xy} dA$$
 $u = \frac{y}{x} \cdot xy = y^2 \Rightarrow y = \sqrt{uv}$ 

$$\frac{u}{v} = \frac{y/x}{xy} = 1/x^2 \Rightarrow x = \sqrt{\frac{v}{u}}$$

$$J(u, v) = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix} = \begin{vmatrix} -\frac{1}{2}\sqrt{\frac{v}{u^3}} & \frac{1}{2}\sqrt{\frac{u}{v}} \\ \frac{1}{2}\sqrt{\frac{v}{u}} & \frac{1}{2}\sqrt{\frac{u}{v}} \end{vmatrix}$$

$$= -\frac{11}{4u} - \frac{11}{4u} = -\frac{11}{2u}$$

1

**Example** Let *R* be the region enclosed by the lines  $y = \frac{1}{2}x$  and y = x, and the hyperbolas  $y = \frac{1}{x}$  and  $y = \frac{2}{x}$ . Evaluate

$$\iint_{R} e^{xy} \, dA$$

$$\iint_{R} e^{xy} dA = \iint_{S} e^{v} |J(u,v)| dA_{uv} = \frac{1}{2} \int_{1}^{2} \int_{1/2}^{1} \frac{1}{u} e^{v} du dv$$

$$= \frac{1}{2} \left[ \int_{1}^{2} e^{v} dv \right] \left[ \int_{1/2}^{1} \frac{1}{u} du \right] = \frac{1}{2} e(e-1) \ln 2$$

| $u = \frac{y}{x}$        | $\frac{1}{2} \leq$ | E u           | $\leq$ | 1 |
|--------------------------|--------------------|---------------|--------|---|
| v = xy                   | 1≤                 | εv            | $\leq$ | 2 |
| $y = \sqrt{uv}$          | 7                  |               |        |   |
| $x = \sqrt{\frac{v}{u}}$ |                    |               |        |   |
| J(u,v) =                 | = —                | $\frac{1}{2}$ |        |   |

**Example** Let *R* be the region bounded by the line  $x + 2y = 2\pi$ , y - axis, and x - axis. Evaluate

$$\iint_R \sin(x+2y)\cos(x-2y) \ dA$$

Since it is not easy to integrate sin(x + 2y) cos(x - 2y), we make a change of variables suggested by:

$$u = x + 2y$$
  
 $v = x - 2y +$   
 $x = \frac{1}{2}(u + v)$   
 $u = x + 2y$   
 $v = x - 2y -$   
 $y = \frac{1}{4}(u - v)$ 



dA

**Example** Let *R* be the region bounded by the line  $x + 2y = 2\pi$ , y - axis, and x - axis. Evaluate

$$\iint_{R} \sin(x+2y)\cos(x-2y)$$

$$(u+v) \qquad y = \frac{1}{4}(u-v)$$

$$J(u,v) = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & -\frac{1}{4} \end{vmatrix} = -\frac{1}{8} - \frac{1}{8} = -\frac{1}{4}$$

 $x = \frac{1}{2}$ 



**Example** Let *R* be the region bounded by the line  $x + 2y = 2\pi$ , y - axis, and x - axis. Evaluate

$$\iint_R \sin(x+2y)\cos(x-2y) \ dA$$



Type I Region

$$= \iint_{S} \sin(u) \cos(v) |J(u,v)| dA_{uv}$$
  
=  $\frac{1}{4} \int_{0}^{2\pi} \int_{-u}^{u} \sin(u) \cos(v) dv du = \frac{1}{4} \int_{0}^{2\pi} [\sin(u) \sin(v)]_{-u}^{u} du = \frac{1}{2} \int_{0}^{2\pi} \sin^{2}(u) du = \frac{\pi}{2}$ 

Course: Calculus (4)

<u>Chapter: [14]</u> MULTIPLE INTEGRALS

Section: [14.8] × CENTERS OF GRAVITY USING MULTIPLE INTEGRALS