Course: Calculus (4)

Chapter: [15]
TOPICS IN VECTOR CALCULUS
Section: [15.1]
VECTOR FIELDS

## VECTOR FIELDS

- A vector field in a plane is a function that associates with each point $P$ in the plane a unique vector $\mathbf{F}(P)$ parallel to the plane.

$$
\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}
$$



## VECTORS VIEWED GEOMETRICALLY

A Vector in 2-space or 3-space; is an arrow with direction and length (magnitude).


Two vectors are equal if they are translations of one another.

## VECTORS VIEWED GEOMETRICALLY

Because vectors are not affected by translation, the initial point of a vector $\mathbf{v}$ can be moved to any convenient point $A$ by making an appropriate trans/ation.


## VECTORS VIEWED GEOMETRICALLY

Example Draw the vector $\mathbf{v}=\langle 2,1\rangle$ from the point ( $-1,2$ ).

End Point $=$ Initial Point $+\mathbf{v}$

$$
\begin{aligned}
& =(-1,2)+(2,1) \\
& =(1,3)
\end{aligned}
$$



## GRAPHICAL REPRESENTATIONS OF VECTOR FIELDS

Example Sketch some vectors in the vector field $\mathrm{F}(x, y)=x \mathrm{i}$.

End Point $=$ Initial Point $+\mathbf{F}$

$$
\begin{aligned}
& =(x, y)+(x, 0) \\
& =(2 x, y)
\end{aligned}
$$



## GRAPHICAL REPRESENTATIONS OF VECTOR FIELDS

Example Sketch some vectors in the vector field $\mathbf{F}(x, y)=-y \mathbf{i}+x \mathbf{j}$.

$$
\begin{aligned}
\text { End Point } & =\text { Initial Point }+\mathbf{F} \\
& =(x, y)+(-y, x) \\
& =(x-y, x+y) \\
\|\mathrm{F}\|=c & \Rightarrow \sqrt{(-y)^{2}+x^{2}}=c \\
& \Rightarrow x^{2}+y^{2}=c^{2}
\end{aligned}
$$



## LEVEL CURVES

The set of points in the plane where a function $f(x, y)$ has a constant value $f(x, y)=c$ is called a level curve of $f$.


The contour curve $f(x, y)=100-x^{2}-y^{2}=75$ is the circle $x^{2}+y^{2}=25$ in the plane $z=75$.


The level curve $f(x, y)=100-x^{2}-y^{2}=75$ is the circle $x^{2}+y^{2}=25$ in the $x y$-plane.

## DIRECTIONAL DERIVATIVES

- To determine the slope at a point on a surface, you will define a new type of derivative called a directional derivative.
- To do this is to use a unit vector

$$
\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}
$$

that has its initial point at $\left(x_{0}, y_{0}\right)$ and points in the desired direction.


$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) u_{1}+f_{y}\left(x_{0}, y_{0}\right) u_{2}
$$

## THE GRADIENT

(a) If $f$ is a function of $x$ and $y$, then the gradient off is defined by

$$
\nabla f(x, y)=f_{x}(x, y) \mathbf{i}+f_{y}(x, y) \mathbf{j}
$$

(b) If $f$ is a function of $x, y$, and $z$, then the gradient of $\boldsymbol{f}$ is defined by

$$
\nabla f(x, y, z)=f_{x}(x, y, z) \mathbf{i}+f_{y}(x, y, z) \mathbf{j}+f_{z}(x, y, z) \mathbf{k}
$$

If $\nabla f \neq \mathbf{0}$ at $P$, then among all possible directional derivatives of $f$ at $P$, the derivative in the direction of $\nabla f$ at $P$ has the largest value. The value of this largest directional derivative is $\|\nabla f\|$ at $P$.

## GRADIENT FIELDS

- If $f(x, y)$ is a function of two variables, then the gradient of $f$ is given by

$$
\nabla f=\left\langle f_{x}, f_{y}\right\rangle=f_{x} \mathbf{i}+f_{y} \mathbf{j}
$$

- This formula defines a vector field in 2 -space called the gradient field of $\boldsymbol{f}$.
- At each point in a gradient field where the gradient is nonzero, the vector points in the direction in which the rate of increase of $f$ is maximum.


## GRADIENT FIELDS

Example Sketch the gradient field of $f(x, y)=x+y$.
$\nabla f=\mathbf{i}+\mathbf{j}$
End Point $=$ Initial Point $+\nabla f$

$$
\begin{aligned}
& =(x, y)+(1,1) \\
& =(x+1, y+1)
\end{aligned}
$$

Draw some level curves.
Note that at each point, $\nabla f$ is normal to the level curve of $f$ through the point.


## CONSERVATIVE FIELDS AND POTENTIAL FUNCTIONS

If $\mathbf{F}$ is an arbitrary vector field in 2 -space or 3 -space, we can ask whether it is the gradient field of some function $f$, and if so, how we can find $f$.

Definition: A vector field F in 2 -space or 3 -space is said to be conservative in a region if it is the gradient field for some function $f$ in that region, that is, if

$$
\mathbf{F}=\nabla f
$$

The function $f$ is called a potential function for F in the region.

## CONSERVATIVE FIELDS AND POTENTIAL FUNCTIONS

Example The vector field given by $\mathrm{F}(x, y)=2 x \mathbf{i}+y \mathbf{j}$ is conservative.

To see this, consider the potential function $f(x, y)=x^{2}+\frac{1}{2} y^{2}$.
Because

$$
\nabla f=2 x \mathbf{i}+y \mathbf{j}=\mathbf{F}
$$

it follows that F is conservative.

## TEST FOR CONSERVATIVE VECTOR FIELD IN THE PLANE

Let $M(x, y)$ and $N(x, y)$ have continuous first partial derivatives on an open disk $R$. The vector field $\mathbf{F}(x, y)=M \mathbf{i}+N \mathbf{j}$ is conservative if and only if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Example Find $\alpha$ such that $\mathbf{F}(x, y)=\left(4 x^{2}+\alpha x y\right) \mathbf{i}+\left(3 y^{2}+4 x^{2}\right) \mathbf{j}$ is a gradient field (conservative).

$$
\begin{array}{rl}
M=4 x^{2}+\alpha x y & \mathrm{~F} \text { is a gradient filed } \\
N=3 y^{2}+4 x^{2} & \Leftrightarrow M_{y}=N_{x} \\
& \Leftrightarrow \alpha x=8 x \\
& \Leftrightarrow \alpha=8
\end{array}
$$

## TEST FOR CONSERVATIVE VECTOR FIELD IN THE PLANE

Example Decide whether the vector field is conservative.
a) $\mathbf{F}(x, y)=\underbrace{x^{2} y}_{M} \mathbf{i}+\underbrace{x y}_{N} \mathbf{j}$

$$
\frac{\partial M}{\partial y}=x^{2} \neq \frac{\partial N}{\partial x}=y
$$

F is not conservative.
b) $\mathbf{F}(x, y)=\underbrace{2 x}_{M} \mathbf{i}+\underbrace{y j}_{N} \mathbf{j}$

$$
\frac{\partial M}{\partial y}=0 \quad=\quad \frac{\partial N}{\partial x}=0
$$

F is conservative.

## FINDING A POTENTIAL FUNCTION FOR F $(x, y)$

Example Find a potential function for $\mathbf{F}(x, y)=\underbrace{2 x y}_{M} \mathbf{i}+\underbrace{\left(x^{2}-y\right)}_{N} \mathbf{j}$.
There exists $f(x, y)$ such that $\mathrm{F}=\nabla f$.

$$
\begin{array}{rlrl}
2 x y \mathbf{i}+\left(x^{2}-y\right) \mathbf{j}=f_{x} \mathbf{i}+f_{y} \mathbf{j} & & \frac{\partial M}{\partial y}=2 x=\frac{\partial N}{\partial x}=2 x \\
f_{x}=2 x y & \Rightarrow f=\int 2 x y d x=x^{2} y+g(y) & \therefore \text { F is conservative. } \\
f_{y}=x^{2}-y & \Rightarrow x^{2}+g^{\prime}(y)=x^{2}-y & & \\
& \Rightarrow g^{\prime}(y)=-y & & \therefore f(x, y)=x^{2} y-\frac{1}{2} y^{2}+c
\end{array}
$$

## THE $\nabla$ OPERATOR

- The symbol $\nabla$ that appears in the gradient expression $\nabla f$ has not been given a meaning of its own.
- It is often convenient to view $\nabla$ as an operator.

$$
\begin{array}{cc}
\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j} & \text { Plane } \\
\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k} & \text { Space }
\end{array}
$$

- We call it the del operator.


## DIVERGENCE AND CURL

- We will now define two important operations on vector fields: the divergence and the curl of the field.
- These names originate in the study of fluid flow.
- Although we will focus only on their computation, seeing their physical meaning before is convenient.


## DIVERGENCE AND CURL

The divergence relates to the way in which fluid flows toward or away from a point.


The field acting like a source. $\operatorname{div} \mathrm{F}(x, y)>0$

The field acting like a sink.
$\operatorname{div} \mathrm{F}(x, y)<0$

Slow flow in Fast flow out
$\operatorname{div} \mathrm{F}(x, y)>0$


Fast flow in Slow flow out

$$
\operatorname{div} \mathrm{F}(x, y)<0
$$

## DIVERGENCE AND CURL

The curl relates to the rotational properties of the fluid at a point.


Clockwise Rotation
$\operatorname{Curl} \mathbf{F}(x, y)$ is negative


Counter-Clockwise Rotation
Curl $\mathrm{F}(x, y)$ is positive

## DEFINITION OF CURL OF A VECTOR FIELD

The curl of $\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}$ is

$$
\begin{aligned}
\operatorname{curl} \mathbf{F}(x, y, z) & =\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & N & P
\end{array}\right| \\
& =\left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right) \mathbf{i}-\left(\frac{\partial P}{\partial x}-\frac{\partial M}{\partial z}\right) \mathbf{j}+\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k}
\end{aligned}
$$

## DEFINITION OF CURL OF A VECTOR FIELD

The curl of $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ is

$$
\begin{aligned}
\operatorname{curl} \mathbf{F}(x, y) & =\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & N & 0
\end{array}\right| \\
& =0 \mathbf{i}-0 \mathbf{j}+\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k}=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k}
\end{aligned}
$$

## DEFINITION OF CURL OF A VECTOR FIELD



## DEFINITION OF CURL OF A VECTOR FIELD



## DEFINITION OF CURL OF A VECTOR FIELD

Example Find curl F of the vector field

$$
\mathbf{F}(x, y, z)=2 x y \mathbf{i}+\left(x^{2}+z^{2}\right) \mathbf{j}+(2 y z) \mathbf{k}
$$

$$
\begin{aligned}
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 x y & x^{2}+z^{2} & 2 y z
\end{array}\right| \\
& =(2 z-2 z) \mathbf{i}-(0-0) \mathbf{j}+(2 x-2 x) \mathbf{k} \\
& =\mathbf{0}
\end{aligned}
$$

## TEST FOR CONSERVATIVE VECTOR FIELD IN SPACE

Suppose that $M, N$, and $P$ have continuous first partial derivatives in an open sphere $Q$ in space. The vector field $\mathbf{F}(x, y, z)=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ is conservative if and only if curl $\mathbf{F}=\mathbf{0}$.

$$
\begin{aligned}
& \left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right) \mathbf{i}-\left(\frac{\partial P}{\partial x}-\frac{\partial M}{\partial z}\right) \mathbf{j}+\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k}=\mathbf{0} \\
& \frac{\partial P}{\partial y}=\frac{\partial N}{\partial z} \quad, \quad \frac{\partial P}{\partial x}=\frac{\partial M}{\partial z} \quad, \quad \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}
\end{aligned}
$$

Example The vector field $\mathbf{F}(x, y, z)=2 x y \mathbf{i}+\left(x^{2}+z^{2}\right) \mathbf{j}+(2 y z) \mathbf{k}$ in the previous example is conservative because curl $\mathrm{F}=\mathbf{0}$.

## TEST FOR CONSERVATIVE VECTOR FIELD IN SPACE

Example Show that the vector field

$$
\mathrm{F}(x, y, z)=x^{3} y^{2} z \mathbf{i}+x^{2} z \mathbf{j}+x^{2} y \mathbf{k}
$$ is not conservative.

$$
\begin{array}{ll}
\frac{\partial P}{\partial y}=x^{2} & \frac{\partial N}{\partial z}=x^{2} \\
\frac{\partial P}{\partial x}=2 x y & \frac{\partial M}{\partial z}=x^{3} y^{2}
\end{array}
$$

$\therefore \mathrm{F}$ is not conservative

## FINDING A POTENTIAL FUNCTION FOR $\mathrm{F}(x, y, z)$

Example Find a potential function

$$
\mathbf{F}(x, y, z)=\underset{f_{x}}{2 x y} \mathbf{i}+\frac{\left(x^{2}+z^{2}\right) \mathbf{j}+2 y z \mathbf{k}}{f_{y}}
$$

From previous example, you know that the vector field is conservative. If $f(x, y, z)$ is a function such that $\mathrm{F}=\nabla f$, then

$$
\begin{aligned}
& f_{x}=2 x y \Rightarrow f=\int 2 x y d x=x^{2} y+g(y, z) \\
& \text { But } f_{y}=x^{2}+z^{2} \Rightarrow x^{2}+g_{y}(y, z)=x^{2}+z^{2} \\
& \Rightarrow g(y, z)=\int z^{2} d y=z^{2} y+K(z) \\
& \\
& \therefore f=x^{2} y+z^{2} y+K(z)
\end{aligned}
$$

## FINDING A POTENTIAL FUNCTION FOR $\mathrm{F}(x, y, z)$

Example Find a potential function

$$
\mathbf{F}(x, y, z)=2 x y \mathbf{i}+\left(x^{2}+z^{2}\right) \mathbf{j}+2 y z \mathbf{k}
$$

$$
f_{z}
$$

From previous example, you know that the vector field given by is conservative. If $f(x, y, z)$ is a function such that $\mathrm{F}=\nabla f$, then
$\therefore f=x^{2} y+z^{2} y+K(z)$

$$
\begin{aligned}
& f_{z}=2 y z \Rightarrow 2 y z+K^{\prime}(z)=2 y z \Rightarrow K^{\prime}(z)=0 \Rightarrow K(z)=c \\
& \therefore f(x, y, z)=x^{2} y+z^{2} y+c
\end{aligned}
$$

## DIVERGENCE OF A VECTOR FIELD

- The divergence of $\mathbf{F}(x, y)=M \mathbf{i}+N \mathbf{j}$ in the plane is

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}(x, y)=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}
$$

- The divergence of $\mathbf{F}(x, y, z)=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ in the space is

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}(x, y, z)=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}
$$

## DIVERGENCE OF A VECTOR FIELD

Example Find the divergence at the point $(2,1,-1)$ for the vector field

$$
\mathrm{F}(x, y, z)=x^{3} y^{2} z \mathbf{i}+x^{2} z \mathbf{j}+x^{2} y \mathbf{k}
$$

$$
\begin{aligned}
& \operatorname{div} \mathbf{F}=\frac{\partial}{\partial x}\left(x^{3} y^{2} z\right)+\frac{\partial}{\partial y}\left(x^{2} z\right)+\frac{\partial}{\partial z}\left(x^{2} y\right)=3 x^{2} y^{2} z \\
& \operatorname{div} \mathbf{F}(2,1,-1)=-12
\end{aligned}
$$

Theorem If $\mathbf{F}(x, y, z)=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ is a vector field and $M, N$, and $P$ have continuous second partial derivatives, then

$$
\operatorname{div}(\operatorname{curl} F)=0
$$

## EQUIVALENT STATEMENTS



Course: Calculus (4)

Chapter: [15]<br>TOPICS IN VECTOR CALCULUS

Section: [15.2]
LINE INTEGRALS

## PARAMETRIC CURVES IN 3 -SPACE

A space curve $C$ is the set of all ordered triples $(x, y, z)$ together with their defining parametric equations

$$
x=f(t), y=g(t) \text { and } z=h(t)
$$

Example The Circular Helix

$$
\begin{aligned}
x & =10 \cos t \\
y & =10 \sin t \\
z & =t \\
\mathbf{r}(t) & =10 \cos t \mathbf{i}+10 \sin t \mathbf{j}+t \mathbf{k} \\
& =\langle 10 \cos t, 10 \sin t, t\rangle
\end{aligned}
$$



## SMOOTH PARAMETRIZATIONS

- We will say that a curve represented by $\mathbf{r}(t)$ is smoothly parametrized by $\mathbf{r}(t)$, or that $\mathbf{r}(t)$ is a smooth function of $t$ if: $\checkmark \mathbf{r}^{\prime}(t)$ is continuous, and $\checkmark \mathbf{r}^{\prime}(t) \neq \mathbf{0}$ for any allowable value of $t$.
- Geometrically, this means that a smoothly parametrized curve can have no abrupt (مفاجئ) changes in direction as the parameter increases.


## SMOOTH PARAMETRIZATIONS

Example Determine whether the vector-valued function $\mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}$ is smooth.

$$
\mathbf{r}^{\prime}(t)=2 t \mathbf{i}+3 t^{2} \mathbf{j}
$$

$\checkmark$ The components are continuous functions, and
$\checkmark$ they are both equal to zero if $t=0$.
$\checkmark$ So, $\mathbf{r}(t)$ is NOT a smooth function at $t=0$.


## PIECEWISE SMOOTH PARAMETRIZATION

A curve $C$ is piecewise smooth when the interval $[a, b]$ can be partitioned into a finite number of subintervals, on each of which $C$ is smooth.

Example Find a piecewise smooth parametrization of the graph of $C$ shown in the figure.
$C_{1}$
$0 \leq t \leq 1$

$x(t)=0$
$x(t)=t-1$
$x(t)=1$
$y(t)=2 t$
$y(t)=2$
$y(t)=2$
$z(t)=t-2$
$z(t)=0$
$z(t)=0$


## PIECEWISE SMOOTH PARAMETRIZATION

Example Find a piecewise smooth parametrization of the graph of $C$ shown in the figure.

$$
\begin{aligned}
& \begin{array}{c}
C_{1} \\
0 \leq t \leq 1
\end{array} \\
& C_{2} \\
& \begin{array}{c}
C_{3} \\
2 \leq t \leq 3
\end{array} \\
& x(t)=0 \\
& y(t)=2 t \\
& 1 \leq t \leq 2 \\
& x(t)=t-1 \\
& y(t)=2 \\
& z(t)=0 \\
& x(t)=1 \\
& z(t)=0 \\
& y(t)=2 \\
& z(t)=t-2 \\
& C=\left\{\begin{array}{cc}
2 t \mathbf{j} & : 0 \leq t \leq 1 \\
(t-1) \mathbf{i}+2 \mathbf{j} & : 1 \leq t \leq 2 \\
\mathbf{i}+2 \mathbf{j}+(t-2) \mathbf{k} & : 2 \leq t \leq 3
\end{array}\right.
\end{aligned}
$$



## ARC LENGTH FROM THE VECTOR VIEWPOINT

If $C$ is the graph of a smooth vector-valued function $\mathbf{r}(t)$, then its arc length $\ell$ from $t=a$ to $t=b$ is

$$
\ell=\int_{a}^{b}\left\|\frac{d \mathbf{r}}{d t}\right\| d t=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

Example Find the arc length of that portion of the circular helix $\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle$ from $t=0$ to $t=\pi$.

## ARC LENGTH FROM THE VECTOR VIEWPOINT

$$
\ell=\int_{a}^{b}\left\|\frac{d \mathbf{r}}{d t}\right\| d t=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

Example Find the arc length of that portion of the circular helix $\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle$ from $t=0$ to $t=\pi$.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\langle-\sin t, \cos t, 1\rangle \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{(-\sin t)^{2}+\cos ^{2} t+1} \\
& =\sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
\ell & =\int_{0}^{\pi}\left\|\mathbf{r}^{\prime}(t)\right\| d t \\
& =\int_{0}^{\pi} \sqrt{2} d t \\
& =\sqrt{2} \pi
\end{aligned}
$$

## LINE INTEGRALS

$\int_{a}^{b} f(x) d x \quad$ Integrate over interval $[a, b]$

$\int_{C} f(x, y) d s \begin{aligned} & \text { Integrate over a piecewise } \\ & \text { smooth curve } C \\ & \text { Line (Curve) Integral }\end{aligned}$


## EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

To evaluate a line integral over a plane curve $C$ given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$ use the fact that

$$
d s=\left\|\mathbf{r}^{\prime}(t)\right\| d t=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

The arc length of $C$ between points $P_{k-1}$ and $P_{k}$ is given by


$$
\Delta s_{k}=\int_{t_{k-1}}^{t_{k}}\left\|\mathbf{r}^{\prime}(t)\right\| d t=\left\|r^{\prime}\left(t_{k}^{*}\right)\right\| \Delta t_{k}
$$

## EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

Therefore, if $C$ is smoothly parametrized by

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j} \quad ; \quad t \in[a, b]
$$

then

$$
\begin{aligned}
\int_{C} f(x, y) d s & =\int_{a}^{b} f(x(t), y(t))\left\|\mathbf{r}^{\prime}(t)\right\| d t \\
& =\int_{a}^{b} f(x(t), y(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
\end{aligned}
$$

## EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

Similarly, if $C$ is a curve in 3 -space that is smoothly parametrized by

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k} \quad ; \quad t \in[a, b]
$$

then

$$
\begin{aligned}
& \int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t))\left\|\mathbf{r}^{\prime}(t)\right\| d t \\
& \quad=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+(z(t))^{2}} d t
\end{aligned}
$$

Note: $\int_{C} 1 d s=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t=$ length of the curve $C$

## EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

Example Using the given parametrization, evaluate the line

$$
\begin{aligned}
& \text { integral } \int_{C}\left(1+x y^{2}\right) d s \\
& C=(1-t)(1,2)+t(0,0) \quad t \in[0,1] \\
&=(1-t, 2-2 t)+(0,0) \\
&=(1-t, 2-2 t) \\
& \mathbf{r}(t)=(1-t) \mathbf{i}+(2-2 t) \mathbf{j}
\end{aligned}
$$



$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =-\mathbf{i}-2 \mathbf{j} \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{5}
\end{aligned}
$$

## EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

$$
\begin{aligned}
& \text { Example Using the given parametrization, evaluate the line } \\
& \text { integral } \int_{C}\left(1+x y^{2}\right) d s \\
& \begin{aligned}
\int_{C}\left(1+x y^{2}\right) d s & =\int_{0}^{1}\left(1+(1-t)(2-2 t)^{2}\right)\left\|\mathrm{r}^{\prime}(t)\right\| d t \\
& =\int_{0}^{1}\left(1+4(1-t)^{3}\right) \sqrt{5} d t \\
& =2 \sqrt{5}
\end{aligned}
\end{aligned}
$$

## EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

Example Using the given parametrization, evaluate the line integral $\int_{C}\left(1+x y^{2}\right) d s$

$$
\begin{array}{lll}
C=(1-t)(0,0)+t(1,2)=(t, 2 t) & t \in[0,1] \\
\mathbf{r}(t)=t \mathbf{i}+2 t \mathbf{j} & \mathbf{r}^{\prime}(t)=\mathbf{i}+2 \mathbf{j} & \left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{5}
\end{array}
$$



$$
\begin{aligned}
\int_{C}\left(1+x y^{2}\right) d s & =\int_{0}^{1}\left(1+4 t^{3}\right)\left\|\mathrm{r}^{\prime}(t)\right\| d t \\
& =\int_{0}^{1}\left(1+4 t^{3}\right) \sqrt{5} d t=2 \sqrt{5}
\end{aligned}
$$



## EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

NOTE - The integrals in the previous example agree, even though the corresponding parametrizations of $C$ have opposite orientations.

- This illustrates the important result that the value of a line integral of $f$ with respect to $s$ along $C$ does not depend on the parametrization of the line segment $C$; any smooth parametrization will produce the same value.
- Later in this section we will see that for line integrals of vector functions, the orientation of the curve is important.


## EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

Example Evaluate the line integral $\int_{C}\left(x y+z^{3}\right) d s$ from $(1,0,0)$ to $(-1,0, \pi)$ along the helix $C$ that is represented by the parametric equations $x=\cos t \quad y=\sin t \quad z=t \quad t \in[0, \pi]$


$$
\begin{aligned}
\mathbf{r}(t) & =\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k} \\
\mathbf{r}^{\prime}(t) & =-\sin t \mathbf{i}+\cos t \mathbf{j}+\mathbf{k} \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{(-\sin t)^{2}+(\cos t)^{2}+(1)^{2}}=\sqrt{2}
\end{aligned}
$$

$$
\int_{C}\left(x y+z^{3}\right) d s=\int_{0}^{\pi}\left(\cos t \sin t+t^{3}\right) \sqrt{2} d t=\frac{\sqrt{2} \pi^{4}}{4}
$$

## EVALUATING A LINE INTEGRAL OVER A PATH

Let $C$ be a path composed of smooth curves $C_{1}, C_{2}, \cdots, C_{n}$. If $f$ is continuous on $C$, then it can be shown that

$$
\int_{C} f(x, y) d s=\int_{C_{1}} f(x, y) d s+\int_{C_{2}} f(x, y) d s+\cdots+\int_{C_{n}} f(x, y) d s
$$

Example Evaluate $\int_{C} x d s$ where $C$ is the piecewis smooth curve shown in the figure.

$$
\begin{array}{ll}
C_{1}: & x=t \quad y=t \quad t \in[0,1] \\
C_{2}: & x=1-t \quad y=(1-t)^{2} \quad t \in[0,1]
\end{array}
$$



## EVALUATING A LINE INTEGRAL OVER A PATH

Example Evaluate $\int_{C} x d s$ where $C$ is the piecewis smooth curve shown in the figure.

$$
C_{1}: \quad x=t \quad y=t \quad t \in[0,1]
$$

$$
\int_{C_{1}} x d s=\int_{0}^{1} t \sqrt{2} d t=\frac{1}{\sqrt{2}}
$$

## EVALUATING A LINE INTEGRAL OVER A PATH

Example Evaluate $\int_{C} x d s$ where $C$ is the piecewis smooth curve shown in the figure.

$$
\begin{array}{ll}
C_{1}: & x=t \quad y=t \quad t \in[0,1] \\
C_{2}: & x=1-t \quad y=(1-t)^{2} \quad t \in[0,1]
\end{array}
$$



$$
\begin{gathered}
\int_{C_{2}} x d s=\int_{0}^{1}(1-t) \sqrt{1+4(1-t)^{2}} d t \\
\quad \longrightarrow=-\frac{1}{8} \int_{5}^{1} \sqrt{u} d u=\frac{1}{12}(5 \sqrt{5}-1) \\
\begin{array}{l}
\text { Let } \\
u=1+4(1-t)^{2}
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& \mathbf{r}(t)=(1-t) \mathbf{i}+(1-t)^{2} \mathbf{j} \\
& \mathbf{r}^{\prime}(t)=-\mathbf{i}-2(1-t) \mathbf{j} \\
& \left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{1+4(1-t)^{2}}
\end{aligned}
$$

## EVALUATING A LINE INTEGRAL OVER A PATH

Example Evaluate $\int_{C} x d s$ where $C$ is the piecewis smooth curve shown in the figure.

$$
\begin{aligned}
C_{1}: \quad x & =t \quad y=t \quad t \in[0,1] \\
C_{2}: \quad x & =1-t \quad y=(1-t)^{2} \quad t \in[0,1] \\
\therefore \int_{C} x d s & =\int_{C_{1}} x d s+\int_{C_{2}} x d s \\
& =\frac{1}{\sqrt{2}}+\frac{1}{12}(5 \sqrt{5}-1)
\end{aligned}
$$



## LINE INTEGRALS OF VECTOR FIELDS

- We can also consider integrating a vector field over a curve in the plane.
- One of the most important physical applications of line integrals is how to determine the work done by F in moving a particle along a curve C .
- The work $W$ done by a constant force of magnitude $F$ on a point that moves a distance $d$ in a straight line in the direction of the force is $W=F d$.


## LINE INTEGRALS OF VECTOR FIELDS

- Consider a force field $\mathrm{F}(x, y)$ and a piecewise continuous smooth curve C .
- We wish to compute the work done by this force in moving a particle along a smooth curve C.
- We divide C into sub-arcs with lengths $\Delta s_{i}$.
- To determine the work done by the force, you need consider only that part of the force that is acting in the same direction as that in which the object is, $\mathbf{T}(t)$.



## LINE INTEGRALS OF VECTOR FIELDS

We call $\mathbf{T}(t)$ the unit tangent vector to $\mathbf{C}$ at $t$, where

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}
$$



This means that at each point on $C$, you can consider the projection of the force vector $\mathbf{F}$ onto the unit tangent vector $\mathbf{T}$.


$$
\begin{aligned}
\operatorname{proj}_{T} \mathrm{~F} & =\frac{\mathrm{F} \cdot \mathrm{~T}}{\|\mathrm{~T}\|^{2}} \mathbf{T} \\
& =\underbrace{(\mathrm{F} \cdot \mathrm{~T})} \mathrm{T}
\end{aligned}
$$



FORCE

## DEFINITION OF THE LINE INTEGRAL OF A VECTOR FIELD

Let F be a continuous vector field defined on a smooth curve $C$ given by $\mathbf{r}(t)$ where $a \leq t \leq b$.

The line integral of $F$ on $C$ is given by

$$
\mathbf{F} \cdot \mathbf{T} d s=\mathbf{F} \cdot \frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}\left\|\mathbf{r}^{\prime}(t)\right\| d t
$$

$$
\begin{array}{rlrl}
\int_{C} \mathbf{F} \cdot \mathbf{T} d s & =\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\mathbf{F} \cdot \mathbf{r}^{\prime}(t) d t \\
& =\int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot \mathbf{r}^{\prime}(t) d t & &
\end{array}
$$

## DEFINITION OF THE LINE INTEGRAL OF A VECTOR FIELD

Example Find the work done by the force field

$$
\mathbf{F}(x, y, z)=-\frac{1}{2} x \mathbf{i}-\frac{1}{2} y \mathbf{j}+\frac{1}{4} \mathbf{k}
$$

on a particle as it moves from the point $(1,0,0)$ to $(-1,0,3 \pi)$ along the helix given by $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$.

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

$$
\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}
$$



$$
\begin{aligned}
& t=0 \\
& t=3 \pi
\end{aligned}
$$



## DEFINITION OF THE LINE INTEGRAL OF A VECTOR FIELD

Example Find the work done by the force field

$$
\mathbf{F}(x, y, z)=-\frac{1}{2} x \mathbf{i}-\frac{1}{2} y \mathbf{j}+\frac{1}{4} \mathbf{k}
$$

on a particle as it moves from the point $(1,0,0)$ to $(-1,0,3 \pi)$ along the helix given by $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$.

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

$$
\begin{aligned}
& \mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k} \\
& \mathbf{r}^{\prime}(t)=-\sin t \mathbf{i}+\cos t \mathbf{j}+\mathbf{k} \\
& \mathbf{F}(x(t), y(t), z(t))=-\frac{1}{2} \cos t \mathbf{i}-\frac{1}{2} \sin t \mathbf{j}+\frac{1}{4} \mathbf{k}
\end{aligned}
$$



## DEFINITION OF THE LINE INTEGRAL OF A VECTOR FIELD

Example Find the work done by the force field

$$
\mathbf{F}(x, y, z)=-\frac{1}{2} x \mathbf{i}-\frac{1}{2} y \mathbf{j}+\frac{1}{4} \mathbf{k}
$$

on a particle as it moves from the point $(1,0,0)$ to $(-1,0,3 \pi)$ along the helix given by $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$.

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{3 \pi}\left(-\frac{1}{2} \cos t,-\frac{1}{2} \sin t, \frac{1}{4}\right) \cdot\langle-\sin t, \cos t, 1\rangle d t \\
& =\int_{0}^{3 \pi} \frac{1}{4} d t=\frac{3 \pi}{4}
\end{aligned}
$$

## ORIENTATION AND PARAMETRIZATION OF A CURVE

NOTE - For line integrals of vector functions, the orientation of the curve $C$ is important.

- If the orientation of the curve is reversed, the unit tangent vector $\mathbf{T}(t)$ is changed to $-\mathbf{T}(t)$, and you obtain

$$
\int_{-C} \mathbf{F} \cdot d \mathbf{r}=-\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

## ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Let $\mathbf{F}(x, y)=y \mathbf{i}+x^{2} \mathbf{j}$. Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for each parabolic curve shown in the figure.
(1) $C_{1}: \quad \mathbf{r}_{1}(t)=(4-t) \mathbf{i}+\left(4 t-t^{2}\right) \mathbf{j} \quad 0 \leq t \leq 3$

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}_{1}=\int_{0_{3}}^{3} \mathbf{F}(x(t), y(t)) \cdot \mathbf{r}_{1}^{\prime}(t) d t
$$



$$
\begin{aligned}
& =\int_{0_{3}}^{3}\left(\left(4 t-t^{2}\right) \mathbf{i}+(4-t)^{2} \mathbf{j}\right) \cdot(-\mathbf{i}+(4- \\
& =\int_{0}^{3}\left(-2 t^{3}+21 t^{2}-68 t+64\right) d t=\frac{69}{2}
\end{aligned}
$$

## ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Let $\mathbf{F}(x, y)=y \mathbf{i}+x^{2} \mathbf{j}$. Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for each parabolic curve shown in the figure.
(2) $C_{2}: \quad \mathbf{r}_{2}(t)=t \mathbf{i}+\left(4 t-t^{2}\right) \mathbf{j} \quad 1 \leq t \leq 4$

$$
\begin{aligned}
\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}_{2} & =\int_{1}^{4} \mathbf{F}(x(t), y(t)) \cdot \mathbf{r}_{2}^{\prime}(t) d t \\
& =\int_{1_{4}}^{4}\left(\left(4 t-t^{2}\right) \mathbf{i}+t^{2} \mathbf{j}\right) \cdot(\mathbf{i}+(4-2 t) \mathbf{j}) d t \\
& =\int_{1}^{2}\left(-2 t^{3}+3 t^{2}+4 t\right) d t=-\frac{69}{2}
\end{aligned}
$$



## LINE INTEGRALS IN DIFFERENTIAL FORM

- A second commonly used form of line integrals is derived from the vector field notation used in Section 15.1.
- If F is a vector field of the form $\mathrm{F}(x, y)=M \mathrm{i}+N \mathbf{j}$, and $C$ is given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$, then $\mathbf{F} \cdot d \mathbf{r}$ is often written as $M d x+N d y$.

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{C} \mathbf{F} \cdot \frac{d \mathbf{r}}{d t} d t=\int_{C}(M \mathbf{i}+N \mathbf{j}) \cdot\left(x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}\right) d t \\
& =\int_{C}\left(M \frac{d x}{d t}+N \frac{d y}{d t}\right) d t=\int_{C}(M d x+N d y)
\end{aligned}
$$

## ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Evaluate $\int_{C}\left(y d x+x^{2} d y\right)$ where $C$ is the parabolic arc given by $y=4 x-x^{2}$ from $(4,0)$ to $(1,3)$ as shown in the figure.

$$
d y=(4-2 x) d x
$$

$\begin{aligned} \int_{C}\left(y d x+x^{2} d y\right) & =\int_{4}^{1}\left(4 x-x^{2}\right) d x+x^{2}(4-2 x) d x \\ & =\int_{4}^{1}\left(4 x+3 x^{2}-2 x^{3}\right) d x \\ & =\frac{69}{2}\end{aligned}$


## ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Evaluate $\int_{C} x^{2} y d x+x d y$ where $C$ is the triangular path shown in the figure.
$C_{1}$ : From $(0,0)$ to $(1,0) \quad y=0 \quad d y=0$

$$
\int_{C_{1}} x^{2} y d x+x d y=\int_{0}^{1} 0 d x=0
$$

$C_{2}$ : From $(1,0)$ to $(1,2) \quad x=1 \quad d x=0$


$$
\int_{C_{2}} x^{2} y d x+x d y=\int_{0}^{2} 1 d y=2
$$

## ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Evaluate $\int_{C} x^{2} y d x+x d y$ where $C$ is the triangular path shown in the figure.

$$
\begin{aligned}
& C_{3}: \text { From }(1,2) \text { to }(0,0) \quad y=2 x \quad d y=2 d x \\
& \begin{aligned}
\int_{C_{3}} x^{2} y d x+x d y & =\int_{1}^{0} x^{2}(2 x) d x+x(2 d x) \\
& =\int_{1}^{0}\left(2 x^{3}+2 x\right) d x=-\frac{3}{2} \\
\therefore \int_{C} x^{2} y d x+x d y & =0+2-\frac{3}{2}=\frac{1}{2}
\end{aligned}
\end{aligned}
$$



## ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Evaluate $\int_{C} x^{2} y d x+x d y$ where $C$ is the triangular path shown in the figure using parametric equations.

$$
\begin{aligned}
& C_{1}: \quad x=t \quad d x=d t \quad y=0 \quad d y=0 \\
& \int_{C_{1}} x^{2} y d x+x d y=\int_{0}^{1}\left(t^{2}\right)(0)(d t)+(t)(0)=0
\end{aligned}
$$



## ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Evaluate $\int_{C} x^{2} y d x+x d y$ where $C$ is the triangular path shown in the figure using parametric equations.

$$
\begin{aligned}
& C_{2}: \quad x=1 d x=0 \quad y=2 t \quad d y=2 d t \\
& \int_{C_{2}} x^{2} y d x+x d y=\int_{0}^{1}\left(1^{2}\right)(2 t)(0)+(1)(2 d t)=2
\end{aligned}
$$



## ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Evaluate $\int_{C} x^{2} y d x+x d y$ where $C$ is the triangular path shown in the figure using parametric equations.

$$
\begin{array}{rl}
C_{3}: \quad x=1-t & d x=-d t \quad y=2-2 t \quad d y=-2 d t \\
\begin{array}{c}
\int_{C_{3}} x^{2} y d x+x d y
\end{array} & =\int_{0}^{1}(1-t)^{2}(2-2 t)(-d t)+(1-t)(-2 d t) \\
& =\int_{0}^{1}-2(1-t)^{3} d t-\int_{0}^{1} 2(1-t) d t \\
& =-\frac{1}{2}-1=-\frac{3}{2}
\end{array}
$$

## ORIENTATION AND PARAMETRIZATION OF A CURVE

Example Evaluate $\int_{C} x^{2} y d x+x d y$ where $C$ is the triangular path shown in the figure using parametric equations.

$$
\begin{aligned}
\int_{C} x^{2} y d x+x d y & =\int_{C_{1}}+\int_{C_{2}}+\int_{C_{3}} \\
& =0+2-\frac{3}{2}=\frac{1}{2}
\end{aligned}
$$



Course: Calculus (4)

Chapter: [15]
TOPICS IN VECTOR CALCULUS
Section: [15.3]
INDEPENDENCE OF PATH; CONSERVATIVE VECTOR FIELDS

## LINE INTEGRAL OF A CONSERVATIVE VECTOR FIELD

Example Find the work done by the force field $\mathbf{F}(x, y)=\frac{1}{2} x y \mathbf{i}+\frac{1}{4} x^{2} \mathbf{j}$ on a particle that moves from $(0,0)$ to $(1,1)$ along each path, as shown in the figures.
(1) $C_{1}=(1-t)(0,0)+t(1,1)=(t, t) \quad t \in[0,1]$

$$
\mathbf{r}_{1}(t)=t \mathbf{i}+t \mathbf{j} \quad \mathbf{r}_{1}^{\prime}(t)=\mathbf{i}+\mathbf{j}
$$

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}_{1}=\int_{0}^{1} \mathbf{F}(x(t), y(t)) \cdot \mathbf{r}_{1}^{\prime}(t) d t
$$

$$
=\int_{0}^{1}\left\langle\frac{1}{2} t^{2}, \frac{1}{4} t^{2}\right\rangle \cdot\langle 1,1\rangle d t=\int_{0}^{1} \frac{3}{4} t^{2} d t=\frac{1}{4}
$$



## LINE INTEGRAL OF A CONSERVATIVE VECTOR FIELD

Example Find the work done by the force field $\mathbf{F}(x, y)=\frac{1}{2} x y \mathbf{i}+\frac{1}{4} x^{2} \mathbf{j}$ on a particle that moves from $(0,0)$ to $(1,1)$ along each path, as shown in the figures.
(2) $C_{2}: x=y^{2} \quad d x=2 y d y$

$$
\begin{aligned}
& \int_{C_{2}} M d x+N d y=\int_{0}^{1} \frac{1}{2} x y d x+\frac{1}{4} x^{2} d y \\
&=\int_{0}^{1} \frac{1}{2}\left(y^{2}\right)(y)(2 y d y)+\frac{1}{4}\left(y^{4}\right) d y=\int_{0}^{1} \frac{5}{4} y^{4} d y \\
&=\frac{1}{4}
\end{aligned}
$$



## LINE INTEGRAL OF A CONSERVATIVE VECTOR FIELD

Example Find the work done by the force field $\mathbf{F}(x, y)=\frac{1}{2} x y \mathbf{i}+\frac{1}{4} x^{2} \mathbf{j}$ on a particle that moves from $(0,0)$ to $(1,1)$ along each path, as shown in the figures.
(3) $C_{3}: y=x^{3} \quad d y=3 x^{2} d x$

$$
\int_{C_{3}} M d x+N d y=\int_{0}^{1} \frac{1}{2} x y d x+\frac{1}{4} x^{2} d y
$$

$$
=\int_{0}^{1} \frac{1}{2}(x)\left(x^{3}\right)(d x)+\frac{1}{4}\left(x^{2}\right)\left(3 x^{2} d x\right)=\int_{0}^{1} \frac{5}{4} x^{4} d x
$$

$$
=\frac{1}{4}
$$

## LINE INTEGRAL OF A CONSERVATIVE VECTOR FIELD

Example Find the work done by the force field $\mathbf{F}(x, y)=\frac{1}{2} x y \mathbf{i}+\frac{1}{4} x^{2} \mathbf{j}$ on a particle that moves from $(0,0)$ to $(1,1)$ along each path, as shown in the figures.

Note that the force field $\mathbf{F}(x, y)=\frac{1}{2} x y \mathbf{i}+\frac{1}{4} x^{2} \mathbf{j}$ is conservative.


$$
\frac{\partial M}{\partial y}=\frac{x}{2}=\frac{\partial N}{\partial x}
$$

So, the work done by the conservative vector field F is the same for each path.

## LINE INTEGRAL OF A CONSERVATIVE VECTOR FIELD

Example Find the work done by the force field $\mathbf{F}(x, y)=\frac{1}{2} x y \mathbf{i}+\frac{1}{4} x^{2} \mathbf{j}$ on a particle that moves from $(0,0)$ to $(1,1)$ along each path, as shown in the figures.

Since the force field $\mathrm{F}(x, y)=\frac{1}{2} x y \mathbf{i}+\frac{1}{4} x^{2} \mathbf{j}$ is conservative, then

$$
\begin{aligned}
\mathbf{F}=\nabla f & =\left\langle f_{x}, f_{y}\right\rangle \\
& =\langle M, N\rangle
\end{aligned}
$$

$$
M \quad N
$$

$f_{y}=N=\frac{1}{4} x^{2} \quad f=\int \frac{1}{4} x^{2} d y=\frac{1}{4} x^{2} y+g(x)$
$f_{x}=M$

$$
\begin{array}{ll}
\frac{1}{2} x y+g^{\prime}(x)=\frac{1}{2} x y & \begin{array}{l}
g^{\prime}(x)=0 \\
\\
g(x)=c
\end{array}
\end{array}
$$

## LINE INTEGRAL OF A CONSERVATIVE VECTOR FIELD

Example Find the work done by the force field $\mathbf{F}(x, y)=\frac{1}{2} x y \mathbf{i}+\frac{1}{4} x^{2} \mathbf{j}$ on a particle that moves from $(0,0)$ to $(1,1)$ along each path, as shown in the figures.

Since the force field $\mathrm{F}(x, y)=\frac{1}{2} x y \mathbf{i}+\frac{1}{4} x^{2} \mathbf{j}$ is conservative, then
$\mathrm{F}=\nabla f=\left\langle f_{x}, f_{y}\right\rangle$
M
$N$
$f(x, y)=\frac{1}{4} x^{2} y+c \quad$ Potential Function
Question: What is the value of $f(1,1)-f(0,0)$ ?

$$
=\left[\frac{1}{4}\left(1^{2}\right)(1)+c\right]-\left[\frac{1}{4}\left(0^{2}\right)(0)+c\right]=\frac{1}{4}
$$

## FUNDAMENTAL THEOREM OF LINE INTEGRALS

Let $C$ be a piecewise smooth curve lying in an open region $R$ and given by

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}, \quad a \leq t \leq b
$$

If $\mathrm{F}(x, y)=M \mathbf{i}+N \mathbf{j}$ is conservative in $R$, and $M$ and $N$ are continuous in $R$, then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \nabla f \cdot d \mathbf{r}=f(x(b), y(b))-f(x(a), y(a))
$$

where $f$ is a potential function of $\mathbf{F}$. That is, $\mathbf{F}(x, y)=\nabla f(x, y)$.

## FUNDAMENTAL THEOREM OF LINE INTEGRALS

Example Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $C$ is a piecewise smooth curve from $(-1,4)$ to $(1,2)$ as shown in the figure, and

$$
\mathbf{F}(x, y)=2 x y \mathbf{i}+\left(x^{2}-y\right) \mathbf{j}
$$

F is conservative
$f(x, y)=x^{2} y-\frac{1}{2} y^{2}+c$

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \nabla f \cdot d \mathbf{r} & =f(1,2)-f(-1,4) \\
& =0-(-4)=4
\end{aligned}
$$



## FUNDAMENTAL THEOREM OF LINE INTEGRALS

Example Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $C$ is a piecewise smooth curve from $(-1,4)$ to $(1,2)$ as shown in the figure, and

$$
\mathbf{F}(x, y)=2 x y \mathbf{i}+\left(x^{2}-y\right) \mathbf{j}
$$

$C^{*}: \quad \mathbf{r}(t)=(2 t-1) \mathbf{i}+(4-2 t) \mathbf{j} \quad t \in[0,1]$

$$
\mathbf{r}^{\prime}(t)=2 \mathbf{i}-2 \mathbf{j}
$$

$$
\begin{aligned}
\mathbf{F}(x(t), y(t)) & =2(2 t-1)(4-2 t) \mathbf{i}+\left((2 t-1)^{2}-(4-\right. \\
& =\left(-8 t^{2}+20 t-8\right) \mathbf{i}+\left(4 t^{2}-2 t-3\right) \mathbf{j}
\end{aligned}
$$

$$
\mathbf{F} \cdot d \mathbf{r}=\mathbf{F} \cdot \mathbf{r}^{\prime}(t) d t=-24 t^{2}+44 t-10
$$



F is conservative

## FUNDAMENTAL THEOREM OF LINE INTEGRALS

Example Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $C$ is a piecewise smooth curve from $(-1,4)$ to $(1,2)$ as shown in the figure, and

$$
\mathbf{F}(x, y)=2 x y \mathbf{i}+\left(x^{2}-y\right) \mathbf{j}
$$

$$
\begin{aligned}
& \mathbf{F} \cdot d \mathbf{r}=-24 t^{2}+44 t-10 \\
& \therefore \int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\left(-24 t^{2}+44 t-10\right) d t=4
\end{aligned}
$$



F is conservative

## INDEPENDENCE OF PATH

A region in the plane (or in space) is connected when any two points in the region can be joined by a piecewise smooth curve lying entirely within the region.

$R_{2}$

If $F$ is continuous on an open connected region, then the line integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

is independent of path if and only if F is conservative.

## EQUIVALENT STATEMENTS

$$
\oint_{C} \vec{F} \cdot d \vec{r}=0
$$

$\vec{F}$ is
conservative

$\int_{C} \vec{F} \cdot d \vec{r}$ is independent of path

## ORIENTATION AND PARAMETRIZATION OF A CURVE

## Example We have seen that

$$
\int_{C} x^{2} y d x+x d y=\frac{1}{2} \neq 0
$$

where $C$ is the triangular path shown in the figure.

$\therefore \mathbf{F}=x^{2} y \mathbf{i}+x \mathbf{j}$ is not conservative is not independent of path

Course: Calculus (4)

Chapter: [15]
TOPICS IN VECTOR CALCULUS
Section: [15.4]
GREEN'S THEOREM

## SIMPLE CURVES

- A curve $C$ given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$ where $a \leq t \leq b$, is simple when it does not cross itself between its endpoints.
- A simple parametric curve may or may not be closed.


Simple but not closed

> Simple and closed


Not simple and not closed

## SIMPLY CONNECTED REGION

- A connected plane region $R$ is simply connected when every simple closed curve in $R$ encloses only points that are in $R$.
- Informally, a simply connected region cannot consist of separate parts or holes.


Not simply connected

## GREEN'S THEOREM

Let $R$ be a simply connected region with a piecewise smooth boundary $C$, oriented counterclockwise. If $M$ and $N$ have continuous first partial derivatives in an open region containing $R$, then

$$
\oint_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A
$$

This theorem states that the value of a double integral over a simply connected plane region $R$ is determined by the value of a line integral around the boundary of $R$.

## GREEN'S THEOREM

An integral sign with a circle is sometimes used to indicate a line integral around a simple closed curve.

$$
\oint
$$

To indicate the orientation of the boundary, an arrow can be used.

$$
\begin{array}{ll}
\oint_{C} & \text { Clockwise } \\
\oint_{C} & \text { Counterclockwise }
\end{array}
$$

## GREEN'S THEOREM

Example Use Green's Theorem to evaluate the line integral

$$
\oint_{C} y^{3} d x+\left(x^{3}+3 x y^{2}\right) d y
$$

where $C$ is the path from $(0,0)$ to $(1,1)$ along the graph of $y=x^{3}$ and from $(1,1)$ to $(0,0)$ along the graph of $y=x$ as shown in the figure.

$$
\begin{array}{ll}
M=y^{3} \\
N & =x^{3}+3 x y^{2} \\
\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}
\end{array} \quad \begin{aligned}
& \mathrm{F}=y^{3} \mathbf{i}+\left(x^{3}+3 x y^{2}\right) \mathbf{j} \\
& \text { Not Conservative }
\end{aligned}
$$



## GREEN'S THEOREM

## Example

$$
\oint_{C} y^{3} d x+\left(x^{3}+3 x y^{2}\right) d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A
$$

$$
=\iint_{R}\left(3 x^{2}+3 y^{2}-3 y^{2}\right) d A
$$



$$
\begin{aligned}
M & =y^{3} \\
N & =x^{3}+3 x y^{2}
\end{aligned}
$$

$$
=\iint_{R} 3 x^{2} d A=\int_{0}^{1} \int_{x^{3}}^{x} 3 x^{2} d y d x=\frac{1}{4}
$$

## GREEN'S THEOREM

## Example Evaluate

$$
\oint_{C}\left(\tan ^{-1} x+y^{2}\right) d x+\left(e^{y}-x^{2}\right) d y
$$

where $C$ is the path shown in the figure.


$$
\begin{array}{ll}
M=\tan ^{-1} x+y^{2} & \mathbf{F}=\left(\tan ^{-1} x+y^{2}\right) \mathbf{i}+\left(e^{y}-x^{2}\right) \mathbf{j} \\
N=e^{y}-x^{2} & \text { Not Conservative } \\
\frac{\partial M}{\partial y}=2 y \neq \frac{\partial N}{\partial x}=-2 x &
\end{array}
$$

## GREEN'S THEOREM

## Example

$$
\begin{aligned}
\oint_{C}\left(\tan ^{-1}\right. & \left.x+y^{2}\right) d x+\left(e^{y}-x^{2}\right) d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A \\
& =\iint_{R}(-2 x-2 y) d A \\
& =\int_{(-3,0)}^{\pi x}(-2 r \cos \theta-2 r \sin \theta) r d r d \theta
\end{aligned}
$$

$$
=\int_{0}^{\pi} \int_{1}^{3}(-2 r \cos \theta-2 r \sin \theta) r d r d \theta
$$

$$
=-\frac{104}{3}
$$

## LINE INTEGRAL FOR AREA

Another application of Green's Theorem is in computing areas.

$$
\text { Area of } R=\iint_{R} 1 d A
$$

If there is function $M$ and $N$

$$
\begin{aligned}
=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A \quad \text { For example, let } \frac{\partial M}{\partial y} & =0 \\
M & =c(x)=0
\end{aligned}
$$

$$
=\oint_{C} M d x+N d y
$$

Then $\frac{\partial N}{\partial x}=1 \quad N=x$

## LINE INTEGRAL FOR AREA

If $R$ is a plane region bounded by a piecewise smooth simple closed curve $C$ oriented counterclockwise, then the area of $R$ is given by

$$
\begin{aligned}
A & =\oint_{C} x d y \\
& =\oint_{C}-y d x \\
& =\frac{1}{2} \oint_{C} x d y-y d x
\end{aligned}
$$

## LINE INTEGRAL FOR AREA

Example Use a line integral to find the area of the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

$$
C: \quad x=a \cos t \quad y=b \sin t \quad 0 \leq t \leq 2 \pi
$$

$$
\begin{aligned}
A=\oint_{C} x d y & =\int_{0}^{2 \pi}(a \cos t)(b \cos t d t) \\
& =\frac{a b}{2} \int_{0}^{2 \pi}(1+\cos (2 t)) d t=a b \pi
\end{aligned}
$$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$



