A Glimpse To Mathematica [Wolfram Language]

Feras Awad

February 20, 2024

This book is prepared for the students at Philadelphia University in Jordan who are taking Math 372, a course in Computer Aided Mathematics. Topics in Set Theory, Number Theory, Calculus, Linear Algebra and Statistics are covered after introducing a brief introduction about Mathematica. The entire document was written in LaTeX, implemented for Windows using the MiKTeX distribution. As for the text editor of my choice, I fancy TeXstudio. All the commands were implemented using Mathematica 13.1.

Contents

Before Starting 3
1 Introduction 4
1.1 What Is the Wolfram Language? 4
1.2 Wolfram Cloud 4
1.3 What is Mathematica? 4
1.4 The Structure of Mathematica 4
1.5 Common Kinds of Interfaces to Mathematica 5
1.6 Notebook Interfaces 5
1.7 Editing Cells and Text 6
1.8 Palettes 6
1.9 Important Resources 7
2 Mathematica as a Calculator 8
2.1 Commands for Basic Arithmetic 8
2.2 Precedence 8
2.3 Built-in Constants 8
2.4 Built-in Functions 9
2.5 Numerical and Scientific Notations 10
2.6 Prefix and Postfix Forms for Built-in Functions 10
2.7 Mathematica Help 11
2.8 Exercises 12
3 Variables and Functions 13
3.1 Rules for Names 13
3.2 Immediate Assignment 13
3.3 Functions 14
3.4 Transformation (Substitution) Rule 15
3.5 Anonymous Functions 15
3.6 Functions with Conditions 16
3.7 Recursion 16
3.8 Exercises 17
3.9 Project 18
4 Lists 19
4.1 What is a List? 19
4.2 Functions Producing Lists 19
4.3 Displaying Lists 20
4.4 Working with Elements of a List 20
4.5 Pseudorandom Numbers 21
4.6 Useful Functions 22
4.7 Listable Functions 22
4.8 Nested Loops 23
4.9 Vectors 24
4.10 Matrices 25
4.11 Special Types of Matrices 26
4.12 Basic Matrix Operations 26
4.13 Exercises 28
4.14 Project 30
5 Logic and Set Theory 31
5.1 Being Logical 31
5.2 Truth Tables 31
5.3 Element " \in " 32
5.4 Handling Sets 32
5.5 Quantifiers 32
5.6 Exercises 33
5.7 Project 34
6 Number Theory 35
6.1 Primes 35
6.2 Integer Factorization 36
6.3 Digits in Numbers 36
6.4 Fibonacci Sequence 37
6.5 Number Theoretic Functions 37
6.6 Selecting from Lists 38
6.7 Exercises 39
6.8 Project 40
7 Computer Algebra and Solving Equations 42
7.1 Working with Polynomials and Powers 42
7.2 Working with Rational Functions 43
7.3 Working with Transcendental Functions 43
7.4 Equations and Their Solutions 44
7.5 Inequalities 47
7.6 Exercises 47
8 Single Variable Calculus 49
8.1 Limits 49
8.2 Differentiation 50
8.3 Implicit Differentiation 51
8.4 Maximum and Minimum 51
8.5 Integration 52
8.6 Sequences 53
8.7 Series 54
8.8 Taylor Polynomials 55
8.9 Exercises 55
9 Graphics in Mathematica 58
9.1 Making Graphs 58
9.2 Plotting Curves 60
9.3 Making Graphs in Space 63
9.4 Surfaces in Cylindrical and Spherical Coordinates 64
9.5 Changing Coordinate Systems 66
9.6 Level Curves and Level Surfaces 68
9.7 Parametric Curves and Surfaces in Space 68
9.8 Visualizing Data 69
9.9 Advanced Graphics 72
9.10 Region Integrals Measures 78
9.11 Graphs and Networks 79
9.12 Exercises 81
References 83
Index 84

Before Starting

This book is meant to be an active companion during the process of learning how to use Mathematica. The main body of the text will certainly provide insights into how Mathematica works, but the examples should be retyped as a starting point for individual exploration. Each chapter contains discussion, tips, and a description of Mathematica functionality, along with actual examples that serve as starting points. Each chapter ends with additional exercises to emphasize comprehension, which can be used as an assignment to students or simply to work through on your own.

No matter what format this book is viewed in, it is recommended that readers have Mathematica on the desktop or Mathematica Online immediately accessible to type the examples and work through the exercises. It is recommended that as readers work through the book, they save a new file for each chapter in Wolfram Notebook format (.nb), either locally or in the Wolfram Cloud, for future reference.

All new Mathematica students should work through chapters one through twelve (at least) to obtain the necessary basis of how to use Mathematica for solving mathematical problems in different mathematical subjects. These chapters will be of value to intermediate Mathematica users by filling in gaps in knowledge that can result from using Mathematica only for a narrowly defined set of tasks, or by broadening the horizons of users who may have learned Mathematica from an older version.

There is a lot more to Wolfram Language, like dealing with the vast majority of options of commands and using new commands for topics and areas that we have missed, than we have been able to cover in this book.

If you have understood what is in this book, and can do its exercises, then you can now consider yourself a Wolfram Language programmer! There will always be more you can learn, but you are ready to start using what you know to do real programming.

As a mathematician, there will probably be something you want to solve or program every day. With a traditional computer language it would take too long to actually do it. But with the Wolfram Language, and with all its built-in knowledge and automation, anyone who knows the language can write very useful programs even in a matter of minutes. The first step in creating a program for something is to see how to think about the thing in computational terms. It might be something where computers have long been used. It might be something that is only now conceivable for computers as a result of the Wolfram Language. Whatever it is, try to imagine a Wolfram Language function for doing it. What input would the function get? What output would it generate? What might the function be called? Do not at first think about how you would write the code. Just think about what the function should do. And only after you have understood that, start writing the code.

1 Introduction

1.1 What Is the Wolfram Language?

The Wolfram Language is a computer language. It gives you a way to communicate with computers, in particular so you can tell them what to do. There are many computer languages, such as C ++ , Java, Python and JavaScript. The Wolfram Language is unique in that it's knowledge based. That means that it already knows a lot, so you have to tell it much less to get it to do things you want.

It's designed to make it as easy as possible to describe what you want, making use of huge amounts of knowledge that are built into the language. And the crucial thing is that when you use the Wolfram Language to ask for something, the computer immediately knows what you mean, and then can actually do what you want.

You can make things that are visual, textual, interactive or whatever. You can do analyses or figure things out. You can create apps and programs and websites. You can take a very wide variety of ideas and implement them-on your computer, on the web, on a phone, on tiny embedded devices and more.

1.2 Wolfram Cloud

The Wolfram Open Cloud gives anyone a way to do "casual" programming whenever they want-with access to all the core computation, interface, deployment and knowledge capabilities of the Wolfram Language. If you want to get more serious-about computation, deployments or storage-you'll need to have an actual subscription for Wolfram Cloud. With the introductory Wolfram Cloud plan, you get 200 MB of cloud storage and temporary file storage and deployments (each file and deployment expires after 60 days). For more information, visit support.wolfram.com.

To start using your Wolfram Cloud product: in a browser, go to wolframcloud.com. Its homepage appears.

1.3 What is Mathematica?

Mathematica is a tool for technical computing based on the Wolfram Language. It contains an extensive knowledge base for working with a very broad range of tasks, including solving equations, programming, importing and exporting data, visualizing functions and data, and much more.

Although Mathematica is a very large and powerful system, you can get up and running with it in just a few minutes and become fairly proficient by learning some basic concepts about how it is organized, the syntax of its commands, and how to get help when you are stuck. This course will guide you through these first steps and provide you with the foundation you need to incorporate Mathematica into your work and/or teaching.

Calculations can often be written in several different styles, with advantages and disadvantages in each scenario. This book focuses on conventions and shortcuts in the Wolfram Language to make calculations shorter, clearer, or easier to understand.

1.4 The Structure of Mathematica

The basic parts of the Mathematica system:

1. Mathematica kernel the part that actually performs computations.
2. Mathematica front end the part that handles interaction with the user.

The most common way to work on Mathematica is to use interactive documents known as notebooks. Notebooks mix Mathematica input and output with text, graphics, palettes, and other material. You can use notebooks either for doing ongoing computations, or as a means of presenting or publishing your results. You should realize that notebooks are part of the "front end" to Mathematica. The Mathematica kernel which actually performs computations may be run either on the same computer as the front end, or on another computer connected via some kind of network or line. In most cases, the kernel is not even started until you actually do a calculation with Mathematica.

1.5 Common Kinds of Interfaces to Mathematica

1. Notebook interface you interact with Mathematica by creating interactive documents.
2. Text-based interface you interact with your computer primarily by typing text on the keyboard. You may be able to start Mathematica with a text-based interface by double-clicking on a Mathematica Kernel icon.
3. MathLink interface communication with other programs. An important aspect of Mathematica is that it can interact not only with human users but also with other programs. This is achieved primarily through MathLink, which is a standardized protocol for two-way communication between external programs and the Mathematica kernel.

1.6 Notebook Interfaces

If you use your computer via a purely graphical interface, you will typically double-click the Mathematica icon to start Mathematica. In a "notebook" interface, you interact with Mathematica by creating interactive documents. The notebook front end includes many menus and graphical tools for creating and reading notebook documents and for sending and receiving material from the Mathematica kernel. A notebook mixing text, graphics, and Mathematica input and output.

When Mathematica is first started, it displays an empty notebook with a blinking cursor. You can start typing right away. Mathematica by default will interpret your text as input. You enter Mathematica input into the notebook, then press Shift + Enter together to make Mathematica process your input. If your keyboard has a numeric keypad, you can use its Enter key instead of Shift + Enter. After you send Mathematica input from your notebook, Mathematica will label your input with $\operatorname{In}[\mathrm{n}]:=$. It labels the corresponding output Out $[\mathrm{n}]=$. Labels are added automatically.

The output is placed below the input. By default, input/output pairs are grouped using rectangular cell brackets displayed in the right margin. In addition to the standard textual input, Mathematica supports the use of generalized, non-textual input such as graphics and user interface controls, freely mixed with textual input. To exit Mathematica, you typically choose the Exit menu item in the notebook interface.

Important Notes When you input a command in Mathematica, make sure you do the following:

1. Use upper and lower case characters exactly as we do. Mathematica is very "case sensitive". If you use the wrong capitalization, you may not get the desired result.
2. Use exactly the type of brackets we show. There are three types of brackets: square brackets [], parentheses (), and curly braces \{ \}. Each has its own meaning in Mathematica. If you use the wrong one, Mathematica may not do what you expect.
3. Your output might appear in a slightly different from ours in some examples. We explain why in the discussion of each example.
4. If your Mathematica notebook contains a lot of output, especially if graphical output is involved, it can become very large when saved to your disk. Consider choosing Delete All Output from the Cell menu before saving your notebook to disk. Your saved file will then be much smaller, and it will be easier to transmit electronically to others using Mathematica.
5. You can stop Mathematica in the middle of a computation by choosing Abort Evaluation under the Evaluation menu.

1.7 Editing Cells and Text

1. Start a new cell in a notebook:

Move the mouse to the new location which is between or outside existing cells. Wait for the cursor to change to the horizontal insertion shape. Click the mouse. A horizontal line will appear between cells. Start typing.
2. Delete a cell:

Click the cell bracket to select the cell. The bracket will be highlighted. Choose either the Cut or Clear command from the Edit menu, or hit the Delete key.
3. Make a copy of a cell in a new location:

Click the cell bracket to select the cell. The bracket will be highlighted. Choose the Copy command from the Edit menu. Move the mouse to the new location. Wait for the cursor to change to the horizontal insertion shape. Click the mouse. A horizontal line will appear between cells. Choose the Paste command from the Edit menu.
4. Move a cell to a new location:

Save procedures as above, except use the Cut command instead of the Copy command.
5. Cut, copy, or paste the text of a cell within the same or another cell:

Handle this the same way that you manipulate text in any word processor. (Use the mouse to select, and then use one of the Cut, Copy or Paste commands.)
6. Change the font, size, or style of an entire cell:

Click the cell bracket to select the cell. From the Format menu select the appropriate font, size, and style.
7. Change the font, size, or style of some (or all) of the text within the cell:
(a) Select the text with the mouse.
(b) From the Format menu select the appropriate font, size, and style.
8. Change the default font, size, or style of all the cells of a given type in a notebook:
(a) Start with the menu selection Format \rightarrow Edit Stylesheet to see the Style Definitions in use with your notebook.
(b) Select a cell style, such as Input, from the pull-down menu.
(c) It appears in the stylesheet window. Click on its grouping bracket.
(d) Make a format change such as Format \rightarrow Size \rightarrow 16. All Input cells in your notebook now appear in 16 point type.

1.8 Palettes

Palettes are specially-prepared types of notebooks that provide graphical shortcuts for entering commands and expressions for those who like visual menus. You open one of them by using the Palettes Menu. There are several predefined palettes available, depending on the specific version of Mathematica you have. For example, The Basic Math Assistant palette lets you enter expressions involving integrals, roots, and fractions in a more pleasing, Mathematical way. It also provides buttons to enter Greek symbols and some special characters directly.

Many of the buttons on the Basic Math Assistant palette, as well as the other Assistant palettes available from the Palettes menu, provide command templates when they are clicked. For example, navigating to the 2 D tab of the Basic Commands section and clicking the Plot button yields the following.

Plot [function , \{ var , min , max \}]

Such a template provides the appropriate syntax for the command name and only requires the user to enter the remaining arguments before evaluating the command. The arguments can be entered with the keyboard (and Tab can be used to jump between the placeholders) or by clicking buttons in the palette.

You can use the CreatePalette command to construct your own custom palette, which is handy if you find yourself doing the same operations and typesetting constructions over and over again.

1.9 Important Resources

Stephen Wolfram Book Online Complete text, with full runnable examples and automatically graded exercises.
wolfram.com/language/elementary-introduction/2nd-ed/
Wolfram Language Home Page Broad collection of resources about the Wolfram Language. wolfram.com/language/

Wolfram Documentation Center Documentation on all functions in the Wolfram Language, with extensive examples.
reference.wolfram.com/language/
Wolfram Programming Lab Online and desktop access to the Wolfram Language, with educational Explorations. wolfram.com/programming-lab/

Wolfram Challenges Dynamic collection of online Wolfram Language programming challenges. challenges.wolfram.com

2 Mathematica as a Calculator

2.1 Commands for Basic Arithmetic

Mathematica works much like a calculator for basic arithmetic. Just use the,,$+- *$, and $/$ keys on the keyboard for addition, subtraction, multiplication, and division. As an alternative to typing $*$, you can multiply two numbers by leaving a space between them (the \times symbol will automatically be inserted when you leave a space between two numbers). You can raise a number to a power using the ^ key. Use the dot . to type a decimal point.

Example 2.1. Calculate:

1) $\frac{25.5}{5}$

In[]: $25.5 / 5$
Out[]: 5.1
2) $4+2^{5}$
$\operatorname{In}[]: \quad 4+2^{\wedge} 5$
Out[]: 36
3) $\frac{23}{5}-\frac{3}{5}+5\left(2^{3}\right)$
$\operatorname{In}[]: \quad 23 / 5-3 / 5+5 * 2 \wedge 3$
Out[]: 44
Did you notice that when you entered the expressions in Example (2.1), Mathematica was actively coloring parts of your input as you typed? Mathematica uses this coloring aid scheme to tell the user whether the input is complete and syntactically correct.

2.2 Precedence

Mathematica follows the laws of precedence of multiplication over addition and so on, just as you do by hand. Precedence of common operators is generally defined so that higher-level operations are performed first. For simple expressions, operations are typically ordered from highest to lowest in the order:

1. Parentheses.
2. Factorial.
3. Exponentiation, from right to left.
4. Multiplication and Division, from left to right.
5. Addition and Subtraction, from left to right.

Note Use parentheses () to group terms in expressions. Do not use square brackets [] or curly braces \{ \}, they mean something different.
Example 2.2. In Mathematica, the expression $\frac{3 \times 5}{4-2}-\frac{2}{1+5}$ is entered as follows.
$\operatorname{In}[]:(3 * 5) /(4-2)-2 /(1+5)$
Out[]: $\frac{43}{6}$
Note that, Mathematica normally gives you an exact (symbolic) value for every expression.

2.3 Built-in Constants

The Mathematical constants used most often are already built into Mathematica. The table below shows a few of these. Notice that all names begin with a capital letter.

π	Ratio of a circle's circumference to its diameter	Pi
e	Natural exponential	E
i	Imaginary number	I
\circ	Degree to radian conversion multiplier	Degree
∞	Positive infinity	Infinity

Once again, you will see some coloring aids as you type the names of built-in constants. When entering Degree, for example, the D will be colored black (it means something on its own), then the characters will be colored blue until you type the final e, at which point the entire name will be colored black. That's because none of the names De, Deg, Degr, or Degre is known. Also, use parentheses in expressions to clarify what you mean. This helps avoid mistakes. For example, you might think that E^2Pi means $\mathrm{e}^{2 \pi}$, but it doesn't! It is actually $\mathrm{e}^{2} \times \pi$ because the exponentiation is done before the multiplication of 2 and π. To get $\mathrm{e}^{2 \pi}$, you should write $\mathrm{E}^{\wedge}(2 \mathrm{Pi})$.

Note It is possible to enter each of these constants, or many other symbols, directly from the keyboard, as well. You can type

2.4 Built-in Functions

Mathematica has many built-in functions. These are the ones you will probably use the most.

Natural logarithm	$\ln \mathrm{x}$	$\log [\mathrm{x}]$
Logarithm to base a	$\log _{\mathrm{a}} \mathrm{x}$	$\log [\mathrm{a}, \mathrm{x}]$
Exponential	e^{x}	$\operatorname{Exp}[\mathrm{x}]$
Absolute value	$\|\mathrm{x}\|$	$\operatorname{Abs}[\mathrm{x}], \operatorname{RealAbs}[\mathrm{x}]$
Square root	$\sqrt{\mathrm{x}}$	$\operatorname{Sqrt}[\mathrm{x}]$
Trigonometric	$\sin \mathrm{x}, \cos \mathrm{x}, \cdots$	$\operatorname{Sin}[\mathrm{x}], \operatorname{Cos}[\mathrm{x}], \ldots$
Inverse trigonometric	$\sin ^{-1} \mathrm{x}, \cos ^{-1} \mathrm{x}, \cdots$	$\operatorname{ArcSin}[\mathrm{x}], \ldots$
Hyperbolic	$\sinh _{\mathrm{x}, \cosh ^{\mathrm{x}}, \cdots}$	$\operatorname{Sinh}[\mathrm{x}], \operatorname{Cosh}[\mathrm{x}], \ldots$
Inverse hyperbolic	$\sinh ^{-1} \mathrm{x}, \cosh ^{-1} \mathrm{x}, \cdots$	$\operatorname{ArcSinh}[\mathrm{x}], \ldots$

Notes

1. The names of Mathematica's built-in functions begin with an upper-case letter, and each uses square brackets for the argument(s) of the function.
2. Mathematica uses radian measure for trigonometric functions.

Example 2.3. Evaluate:

1) $\sin \left(\frac{2 \pi}{3}\right)$ $\operatorname{In}[]: \operatorname{Sin}[2 P i / 3]$
Out []: $\frac{\sqrt{3}}{2}$
2) $\log _{4}(1024)$
$\begin{aligned} \operatorname{In}[]: & \log [4,1024] \\ \text { Out [] : } & 5\end{aligned}$
3) $\cos \left(120^{\circ}\right)$
4) $\sqrt{2}+\sqrt{8}$
$\operatorname{In}[]: \quad \operatorname{Sqrt}[2]+\operatorname{Sqrt}[8]$
Out[]: $3 \sqrt{2}$
5) $e^{3 \ln 5}$
$\operatorname{In}[$]: $\operatorname{Exp}[3 \log [5]]$
Out[]: 125
6) $\tan ^{-1}(-\infty)$
$\begin{array}{ll}\text { In [] : } & \text { ArcTan[-Infinity] } \\ \text { Out []: } & -\frac{\pi}{2}\end{array}$
Out []: $-\frac{1}{2}$

To evaluate the real-valued cube root of a real number x , use the CubeRoot $[\mathrm{x}$] function. We evaluate the value of $\sqrt[3]{-2.46038}$ as follows.

In []: CubeRoot[-2.46038]

In general, to evaluate the real-valued $\mathrm{n}^{\text {th }}$ root of a real number x , use the built-in function $\operatorname{Surd}[\mathrm{x}, \mathrm{n}]$.
Example 2.4. Evaluate $\sqrt[8]{\frac{390625}{6561}}$.
$\operatorname{In}[]: \quad \operatorname{Surd}[390625 / 6561,8]$
Out[]: $\frac{5}{3}$

Notes

1. $\log 2[\mathrm{x}]$ gives the base-2 logarithm of x . Also, $\log 10[\mathrm{x}]$ gives the base-10 logarithm of x .
2. You can add a comment to any expression by enclosing it within the symbol pairs (* and ${ }^{*}$). For example:

$$
\begin{aligned}
\text { In []: } & 27 * 3 \quad(* \text { This multiplies } 27 \text { and } 3 . \quad *) \\
\text { Out []: } & 81
\end{aligned}
$$

Mathematica does not try to evaluate the phrase "This multiplies 27 and 3." when it evaluates your input. The phrase is for your use only. Mathematica reminds you of this by coloring comments gray.
3. To do a computation, but do not print its output, you have to end your command by semicolon \qquad

2.5 Numerical and Scientific Notations

Mathematica normally gives you an exact (symbolic) value for every expression, for example

$$
\begin{array}{ll}
\operatorname{In}[]: & (3+9) *(4-8) / 1247 * 67 \\
\text { Out [] : } & -\frac{3216}{1247}
\end{array}
$$

You can force Mathematica to give you an answer that looks like the decimal answer you would get on a calculator by using the function N with square brackets around an expression. If we attempt to give a result with n -digit precision for an expression (expr) we use N [expr, n]. For example,

$$
\begin{array}{cl}
\operatorname{In}[]: & \mathrm{N}[(3+9) *(4-8) / 1247 * 67] \\
\text { Out }[]: & -2.57899
\end{array}
$$

Example 2.5. Find the 45-digits precision of π.

```
In[]: N[Pi, 45]
Out[]: 3.14159265358979323846264338327950288419716940
```

Example 2.6. Find the numerical value of $\log _{2}\left(\frac{\sqrt{2}+\sqrt[7]{123}}{1+\sin \left(\frac{\pi}{13}\right)}\right)$ using 16 -digits of precision.

```
In[]: N[Log2[(Sqrt[2] + Surd[123, 7])/(1 + Sin[Pi/13])], 16]
```

Out[]: 1.457204671921001

Mathematica uses standard scientific notation to display results when the numbers either get very large or very small. For example,

```
In[ ]: N[1234567890]
Out[]: 1.23457\times109
In[]: N[1234567890,2]
Out[]: 1.23 < 109
In[]: N[0.000003492836]
Out[]: 3.49284\times10-6
```

Note The command IntegerPart [x] gives the integer part of x while FractionalPart [x] gives the fractional part of x . For example

```
In[]: IntegerPart[N[Pi, 10]]
Out[]: 3
    In[]: FractionalPart[N[Pi, 10]]
Out[]: 0.141592654
```


2.6 Prefix and Postfix Forms for Built-in Functions

There are three ways to write expressions in Mathematica.

$\mathrm{f}[\mathrm{x}, \mathrm{y}]$	Standard form for $\mathrm{f}[\mathrm{x}, \mathrm{y}]$	$\mathrm{N}[$ Sqrt $[2]]$	1.41421
$\mathrm{f@x}$	Prefix form for $\mathrm{f}[\mathrm{x}]$	N@Sqrt [2]	1.41421
$\mathrm{x} / / \mathrm{f}$	Postfix form for $\mathrm{f}[\mathrm{x}]$	Sqrt $[2] / / \mathrm{N}$	1.41421

You should notice that // has very low precedence. If you put //f at the end of any expression containing arithmetic or logical operators, the f is applied to the whole expression. So, for example, $x+y / / f$ means $f[x+y]$, not $x+f[y]$. While the prefix form @ has a much higher precedence. $f @ x+y$ is equivalent to $f[x]+y$, not $f[x+y]$. You can write $f[x+y]$ in prefix form as $f @(x+y)$.

2.7 Mathematica Help

In order to get a quick description of a command, use ?Command. For example, to get quick info about the function N[] just type ?N.
Symbol
$\mathrm{N}[$ expr $]$ gives the numerical value of expr.
$\mathrm{N}[$ expr, $n]$ attempts to give a result with n-digit precision.
\checkmark

If you need more explanation use ??Command. If you need even more, use Mathematica's Document Center in the Help Menu and search for the command. Mathematica comes with an excellent Help which contains explanations and many nice examples demonstrating how to use each of the functions available in this software.

Using the Input Assistant The Input Assistant helps you automatically complete code, discover functions and options, and reduce oversights and typographical errors while coding.

As you type, a list of possible functions and variables (both system- and user-defined) is displayed after a user-defined delay. The list is refined automatically as you type additional characters.

Completions can be inserted using the keyboard or the mouse. Select a completion with the mouse pointer or arrow keys. Press Enter or Tab, or click to insert the completion.

Access documentation for a function or variable by clicking the document icon \boldsymbol{i} next to the function name. The documentation will open in a new window.

Function Templates describe common formatting for specified functions. Function templates can be accessed via code completion. If an inserted function has associated templates, a new button will display after inserting the completion.

Plot [

Press Tab or Enter, or click the displayed down arrow icon to access a list of templates for the current function. Alternatively, pressing $\mathrm{Ctrl}+$ Shift +K after fully typing a function name will access the template list.

Inserted function templates are fully editable text. Variables that require completion are represented by a yellow placeholder. The currently selected placeholder is highlighted in blue and you can use the Tab key to advance to the next placeholder. Typing any character will replace the placeholder with that character. You must replace each placeholder to successfully evaluate your input.

$$
\operatorname{Plot}\left[f,\left\{x, x_{\min }, x_{\max }\right\}\right]
$$

Note The Input Assistant feature set has many other components such as:

1. Option templates: View and insert options related to your current function.
2. Dynamic highlighting: Highlight code as you type to more easily identify which part of the code you are working in.
3. String completion: Autocomplete string arguments inside functions.
4. Color chooser: Choose a specific RGB color from an autocomplete interface.

Wolfram Predictive Interface Once you finish a computation, the Suggestions Bar provides immediate access to possible next steps optimized for your results. Clicking suggested actions will perform the action on the output.

more... - display more suggested actions
e - combine several actions into one input expression
赏 - get a Wolfram \mid Alpha report on the output
目 - send feedback

2.8 Exercises

1. Compute a 20 decimal place approximation to e, the base of the natural logarithm. Ans. 2.7182818284590452354
2. Calculate
(a) $\left|\frac{\log _{2}(128)+\sqrt[6]{16777216}}{\cos \left(\sin ^{-1}\left(\frac{1}{2}\right)\right)}\right|$
(b) $\tan \left(\frac{\pi}{5}\right)$
Ans. (a) $\frac{46}{\sqrt{3}}$ (b) $\sqrt{5-2 \sqrt{5}}$
3. Compute the common logarithm (base 10) of 2^{5}. What is its numerical approximation? Ans. 1.50515
4. What happens if you try to subtract ∞ from ∞ ? What happens if you compute $\frac{1}{0}$? Ans. Indeterminate, ComplexInfinity
5. Can Mathematica calculate the expression $2^{9941}-1$ easily?

Ans. Yes
6. Show that $\sqrt{\sqrt[3]{64}\left(2^{2}+\left(\frac{1}{2}\right)^{2}\right)-1}=4$.
7. Add parentheses to $4-2 * 3+4$ to make 14 .
8. Try to find the numerical value of $\sin ^{2}\left(\frac{\pi}{5}\right)$.

Ans. 0.345492
9. Use the help to read about the command FunctionExpand, and use it to prove that $\sin \left(24^{\circ}\right)=$ $\frac{1}{8} \sqrt{3}(\sqrt{5}+1)-\frac{1}{4} \sqrt{\frac{1}{2}(5-\sqrt{5})}$.
10. Find the rational number with smallest denominator that approximates the value of π with error (tolerance) 0.001.
Hint: see the command Rationalize.
Ans. $\frac{201}{64}$

3 Variables and Functions

3.1 Rules for Names

You are free to make up the names of the variables you use, as long as you use only letters and numbers and obey these rules:

1. Names cannot begin with a number.
2. Names cannot contain special characters like @, -, , \& , \%, $\$,!, \cdots$, etc.
3. You cannot use names that conflict with the names that are predefined in Mathematica. For example, you cannot name one of your own variables Sin.
Notice that because of the first rule above, Mathematica will automatically "do the right thing" with an expression such as 2 x . Since this is not an acceptable name, Mathematica will interpret it as " 2 " times " x ". All of the following are examples of legitimate names that you can use for variables:
```
a, m, pI, A, area, perimeter, ABBA, good4you, class0f2016
```

Mathematica distinguishes uppercase and lowercase characters. For example, the names Batman, batman, and batMan are all different. One convention we will use throughout the remainder of the text is that all of the variable names we define will begin with a lowercase letter. You will know that the names belong to us, since all of Mathematica's predefined names start with an uppercase letter.

3.2 Immediate Assignment

You can define a name by assigning any value to it. You can then use the value whenever you want later in a computation. You do this using the equal sign $=$, which is the symbol for immediate assignment. For example:

$$
\begin{array}{cl}
\operatorname{In}[]: & a=3 \\
\operatorname{Out}[]: & 3
\end{array}
$$

The name "a" can also be called a symbol or a variable. Once you have assigned a value to a variable, you can recall it by using it directly in an expression:

$$
\begin{array}{cl}
\operatorname{In}[]: & \text { N@Sqrt [2/a] } \\
\text { Out [] : } & 0.816497
\end{array}
$$

You may want to know how Mathematica keeps track of all the symbols and variables that you define. Say we assign the name mySum to the sum of x and 3 times y .

$$
\begin{aligned}
\operatorname{In}[]: & \text { mySum }=\mathrm{x}+3 \mathrm{y} \\
\text { Out[]: } & \mathrm{x}+3 \mathrm{y}
\end{aligned}
$$

In this case, Mathematica simply repeated our definition because x and y do not yet have an associated value. Now suppose we assign the value 2 to x and the value 5 to y , and then reevaluate mySum:

$$
\begin{aligned}
\operatorname{In}[]: & \mathrm{x}=2 ; \mathrm{y}=5 ; \text { mySum } \\
\operatorname{Out}[]: & 17
\end{aligned}
$$

When Mathematica reevaluated mySum this time, it replaced x and y by their respective values, and simplified the resulting expression.

Note Mathematica will interpret spaces between letters as multiplication, but it will not put a \times sign on the screen. If you are not looking carefully, you may not notice the difference between the expression x y and xy . The former means x times y , while the latter is the name of a single variable called xy .

Clearing Symbols You tell Mathematica to forget about the assignment using the Clear command:

```
In[]: Clear[a]
Out[]: a
```

You can also Clear assignments for many names at the same time in one statement Clear [mySum, x , $\mathrm{y}, \mathrm{X}, \mathrm{Y}, \mathrm{A}, \mathrm{B}]$. You can use the command
In[]: Clear["Global' *"]
to clear all the variable and function names you have created so far in your Mathematica session.

3.3 Functions

Mathematica has many built-in functions such as N, Sqrt, Sin and Log. You can add your own functions as well.

Defining Functions To define a function $f(x)$ in Mathematica, you use the syntax:
$\mathrm{f}[\mathrm{x}$ _] := formula in terms of the variable x
This syntax may look a little awkward, but you should notice:

- The underscore character immediately following the variable on the left, x_{-}, tells Mathematica that x is the variable of the function.
- The colon-equal sign $:=$ is a delayed assignment command. It behaves differently from $=$. The basic difference between these forms is when the expression at rhs is evaluated. lhs=rhs is an immediate assignment, in which rhs is evaluated at the time when the assignment is made. lhs:=rhs, on the other hand, is a delayed assignment, in which rhs is not evaluated when the assignment is made, but is instead evaluated each time the value of lhs is requested.
- After you type the x_{-}, Mathematica visually identifies occurrences of the variable name in the formula by setting them in italic type. On some systems, the variable will also appear in a different color, like the green color.

Example 3.1. Define the function $f(x)=\frac{x^{2}+4}{x-1}$ in Mathematica, and then evaluate the value of $f(3), f(-1.2)$, and $f(1)$.

$\operatorname{In}[]:$	$\mathrm{f}[\mathrm{x}-]:=\left(\mathrm{x}^{\wedge} 2+4\right) /(\mathrm{x}-1)$
$\operatorname{In}[]:$	$\mathrm{f}[3]$
Out [] $:$	$\frac{13}{2}$
$\operatorname{In}[]:$	$\mathrm{f}[-1.2]$
Out [] $:$	-2.47273
$\operatorname{In}[]:$	$\mathrm{f}[1]$
Out [] $:$	ComplexInfinity

Functions of Several Variables Functions with more than one variable are defined using a similar syntax, as illustrated in the following examples.

Example 3.2. Define a function that computes the average speed of a moving object passes a distance 40 (km) in a time $34(\mathrm{~min})$.

```
In[]: speed[distance_, time_] := distance / time
In[]: N@speed[40, 34]
Out[]: 1.17647 (* 1.17647 kilometers per minute. *)
In[]: N@speed[40, 34/60]
Out[]: 70.5882 (* 70.5882 kilometers per hour. *)
```

Example 3.3. Heron's formula states that the area of a triangle whose sides have lengths a, b, $a n d c$ is $A=\sqrt{s(s-a)(s-b)(s-c)}$ where s is the semi-perimeter of the triangle; that is, $s=\frac{a+b+c}{2}$. Let $\triangle A B C$ be the triangle with sides $a=4, b=13$ and $c=15$, find its area.

```
In[]: TriangleArea[a-, b_, c_] := (
    s=(a + b + c)/2;
    Sqrt[s (s - a) (s - b) (s - c)]
    )
In[]: TriangleArea[4, 13, 15]
Out[]: 24
```

Piecewise Functions A new command named Piecewise has been introduced in Mathematica 6 specifically for dealing with functions of split definition. Its syntax has either of these two forms, each of which pairs together values and conditions:

```
Piecewise[{ {val1, cond1} , {val2, cond2} , ...}]
Piecewise[{ {val1, cond1} , {val2, cond2} , ...}, default value]
```

Example 3.4. Let $g(x)=\left\{\begin{array}{ll}1-x & : 0<x \leq 2 \\ x \ln x & : 2<x \leq 5 \\ e^{x} & : x \leq 0 \text { or } x>5\end{array}\right.$. Find the values of $g(1), g(5)$, and $g(-4)$.

$$
\operatorname{In}[]: \quad g\left[x_{-}\right]:=\text {Piecewise }[\{\{1-x, 0<x<=2\},\{x \log [x], 2<x<=5\}\}, \operatorname{Exp}[x]]
$$

$$
\operatorname{In}[]: \quad \mathrm{g}[1]
$$

Out[]: 0
$\operatorname{In}[]: \quad g[5]$
Out[]: $5 \ln 5$
In []: $\quad g[-4]$
Out[]: e^{-4}
Use Esc $+\mathrm{p}+\mathrm{w}+$ Esc to enter $\{$ and $\mathrm{CtrI}+\square$ and then $\mathrm{Ctrl}+$ Enter for each additional piecewise case.

3.4 Transformation (Substitution) Rule

You can substitute values into any symbolic expression without having to assign values to the variables explicitly. The substitution symbol "/." is made using the slash and period symbols, with no space in between. It is used in the form:
expression /. \{list of transformations using ->, separated by commas\}
For example, to substitute $\mathrm{x}=2$ and $\mathrm{y}=5$ into the expression $\mathrm{x}^{2}-2 \mathrm{xy}$:

$$
\begin{aligned}
\operatorname{In}[]: & x^{\wedge} 2-2 * x * y / .\{x->2, y->5\} \\
\text { Out []: } & -16
\end{aligned}
$$

The arrow symbol $->$ is formed by entering the minus sign and greater than sign together, with no spaces in between. (As soon as you finish typing these two signs, Mathematica will automatically change them to a very spiffy looking \rightarrow) The arrow symbol \rightarrow represents a transformation rule. We may use it many times throughout the lectures. The primary advantage of using the transformation command is that the value you substitute into a variable is temporary and is not assigned to the variable. It is not remembered by Mathematica.

Example 3.5. The roots of a quadratic function $f(x)=a x^{2}+b x+c$ are given by the quadratic formula

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

Let $f(x)=x^{2}+x-6$. Find the larger root of f.

```
In[]: (-b + Sqrt[b^2 - 4 a c])/(2 a) /. {a -> 1, b -> 1, c -> -6}
Out[]: 2
```

Note You can use / . to replace heads of expressions:

$$
\begin{aligned}
\operatorname{In}[]: & \operatorname{Sin}[\mathrm{x}] / . \quad \text { Sin }->\operatorname{Cos} \\
\text { Out }[]: & \cos (\mathrm{x})
\end{aligned}
$$

3.5 Anonymous Functions

Sometimes we need to "define a function as we go" and use it on the spot. Mathematica enables us to define a function without giving it a name (nor any reference to any specific variables) use it, and then move on! These functions are called anonymous or pure functions. Obviously if we need to use a specific function frequently, then the best way is to give it a name and define it as we did before. Here is an anonymous function equivalent to $f(x)=x^{2}+4$.

$$
\operatorname{In}[]: \quad\left(\#^{\wedge} 2+4\right) \&
$$

The expression $\left(\#^{\wedge} 2+4\right) \&$ defines a nameless function. As usual we can plug in data in place of \#. The symbol \& determines where the definition of the function is completed. For example, we find the value of $f(x)=x^{2}+4$ when $x=5$ using the pure function form as follows

$$
\begin{aligned}
\operatorname{In}[]: & \left(\#^{\wedge} 2+4\right) \&[5] \\
\text { Out [] : } & 29
\end{aligned}
$$

Also, the value of $\mathrm{g}(\mathrm{x})=\sqrt{\mathrm{x}} \sin (\mathrm{x})$ when $\mathrm{x}=\frac{\pi^{2}}{16}$ in numerical form is

$$
\begin{aligned}
\operatorname{In}[]: & (\operatorname{Sqrt}[\#] \operatorname{Sin}[\#]) \&\left[\mathrm{Pi}^{\wedge} 2 / 16\right] / / \mathrm{N} \\
\text { Out []]: } & 0.454328
\end{aligned}
$$

Anonymous functions can handle several variables. Here is an example of an anonymous function for $f(x, y)=\sqrt{x^{2}+y^{2}}$.

$$
\begin{aligned}
\operatorname{In}[]: & \text { Sqrt }[\# 1 ~ 2+\# 2 ~ 2] \&[3,4] \\
\text { Out }[]: & 5
\end{aligned}
$$

As you might guess, \#1 and \#2 refer to the first and second variables in the function.

3.6 Functions with Conditions

Everything in Mathematica is an expression and each expression has a pattern. One can search for a specific pattern and change it to another pattern. This is called pattern matching programming.

The Wolfram Language provides a general mechanism for specifying constraints on patterns. All you need to do is to put /; condition at the end of a pattern to signify that it applies only when the specified condition is True. For example, this gives a definition for f that applies only when its argument x is positive:

$\operatorname{In}[]:$	$f\left[x_{-} / ; x>0\right]:=x^{\wedge} 2$
$\operatorname{In}[]:$	$f[5]$
Out [] :	25
$\operatorname{In}[]:$	$f[-4]$
Out [] $:$	$f[-4]$

In general, you can put / ; condition at the end of any := definition to tell the Wolfram Language that the definition applies only when the specified condition holds.

$$
\begin{aligned}
\operatorname{In}[]: & \mathrm{f} 2\left[\mathrm{x}_{-}\right]:=\mathrm{x} 2 / ; \mathrm{x}>0 \\
\operatorname{In}[]: & \mathrm{f} 2[5] \\
\text { Out [] }] & 25 \\
\operatorname{In}[]: & \mathrm{f} 2[-4] \\
\text { Out [] : } & \mathrm{f} 2[-4]
\end{aligned}
$$

There is a collection of functions built into the Wolfram Language for testing the properties of expressions. Some of these functions are: Positive, Negative, NonPositive and NonNegative. Using the function Positive, and the question mark "?" as a pattern test, we can define:

In[]:	$\mathrm{f} 3\left[\mathrm{x} _? P o s i t i v e\right]:=\mathrm{x}^{\wedge} 2$
In[]:	$\mathrm{f} 3[5]$
Out[]:	25
In[]:	$\mathrm{f} 3[-4]$
Out[]:	$\mathrm{f} 3[-4]$

Note that the condition expr_/; test can be shortened to expr_? test
Types of Numbers Four underlying types of numbers are built into the Wolfram System: Integer, Rational, Real and Complex. For example, the following function applies only if its argument is a positive integer.

$\operatorname{In}[]:$	$f 4[$ x_Integer?Positive $]:=x^{\wedge} 2$
In[] $:$	$f 4[5]$
Out [] $:$	25
$\operatorname{In}[]:$	$f 4[1 / 5]$
Out [] $:$	$f 4[1 / 5]$
$\operatorname{In}[]:$	$f 4[-4]$
Out [] $:$	$f 4[-4]$

There is another collection of functions built into the Wolfram Language for testing the properties of expressions. The most useful of these functions are: Even $Q[x], \operatorname{OddQ}[\mathrm{x}]$ and Prime $\mathrm{Q}[\mathrm{x}]$.
Example 3.6. Define the Collatz function $f(x)=\left\{\begin{array}{ll}\frac{x}{2} & : x \text { is even } \\ 3 x+1 & : x \text { is odd }\end{array}\right.$.

```
In[]: f[x_Integer?EvenQ] := x/2
    f[x_Integer?OddQ] := 3 x + 1
```


3.7 Recursion

Many important and classical problems in mathematics and computer science are defined, or have solutions in terms of recursive definitions like the factorial function. A function is defined using recursion if in its definition, it makes calls to itself. The classic example is the factorial function which can be defined recursively as follows.

```
In[]: f[0] = 1; f[1] = 1;
In[]: f[n_Integer?Positive] := n f[n - 1]
In[]: f[5]
Out[]: 120
```

Fibonacci Numbers Recursive definitions of Mathematical quantities were used by mathematicians for centuries before computers even existed. One famous example is the definition of a special sequence of numbers first studied in the Middle Ages by the Italian mathematician Leonardo Fibonacci.

The Fibonacci numbers are generated as follows: start with two 1s, then add them to generate the third number in the sequence; and generally, each new number in the sequence is created by adding the previous two numbers you have written down.

$$
\begin{array}{ccccccccc}
1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & \cdots \\
F_{1} & F_{2} & F_{3} & F_{1} & F_{5} & F_{6} & F_{7} & F_{8} & \ldots
\end{array}
$$

The simplest way to define these numbers is with recursion.

$$
\begin{aligned}
& F(1)=1 \\
& F(2)=1 \\
& F(3)=F(n-1)+F(n-2), \quad \text { for } \quad n>2
\end{aligned}
$$

In this form, we can translate the definition directly into Mathematica.

$\operatorname{In}[]:$	$f[1]=1 ; f[2]=1 ;$
$\operatorname{In}[]:$	$f\left[n_{\text {_Integer }}\right]:=f[n-1]+f[n-2] / ; n>2$
$\operatorname{In}[]:$	$f[7]$
Out [] $]:$	13
$\operatorname{In}[]:$	$f[15]$
Out [$]:$	610

3.8 Exercises

1. The arc length of a segment of a parabola $A B C$ of an ellipse with semi-minor axes a and b is given approximately by:

$$
\mathrm{L}_{\mathrm{ABC}}=\frac{1}{2} \sqrt{\mathrm{~b}^{2}+16 \mathrm{a}^{2}}+\frac{\mathrm{b}^{2}}{8 \mathrm{a}} \ln \left[\frac{4 \mathrm{a}+\sqrt{\mathrm{b}^{2}+16 \mathrm{a}^{2}}}{\mathrm{~b}}\right]
$$

Determine $L_{A B C}$ if $\mathrm{a}=11 \mathrm{~cm}$ and $\mathrm{b}=9 \mathrm{~cm}$.

Ans. 24.5637
2. Define the two functions $f(x)=x^{2}-1$ and $g(x)=x^{3}$.
(a) Evaluate: $f(g(x)), g(2 f(3)-13), f(f(f(0.5))))$.

Ans. $x^{6}-1,27,-0.808594$
(b) What will the following functions do?

Compose[f, g, x]
ComposeList[\{g, f\}, x]
3. In the triangle shown $\mathrm{a}=5.3 \mathrm{~cm}, \gamma=32^{\circ}$, and $\mathrm{b}=6 \mathrm{~cm}$. Define α, β, and c as variables, and then:
(a) Calculate the length c by using the Law of Cosines:

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \gamma
$$

Ans. 3.18656
(b) Calculate the angles α and β (in degrees) using the Law of Cosines.

Ans. $\alpha=61.8095^{\circ}, \beta=86.1905^{\circ}$

4. Define the function $\mathrm{g}(\mathrm{x})=\left\{\begin{array}{ll}\mathrm{x} \sin (\pi \mathrm{x}) & :-\pi \leq \mathrm{x} \leq \pi \\ 1-\mathrm{x} & \text { : otherwise }\end{array}\right.$, then evaluate the value of $g(-5), g(6)$, $g(\pi)$, and $g(1.8)$.
Ans. $6,-5, \pi \sin \left(\pi^{2}\right),-1.05801$
5. For each of the following sequences of numbers, see if you can deduce the pattern and write a Mathematica function to compute the general term.
(a) $\begin{array}{cccccccl}2 & 3 & 6 & 18 & 108 & 1944 & 209952 & \cdots \\ & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} \\ \ldots\end{array}$
(b) $\begin{array}{cccccccccc}0 & 1 & -1 & 2 & -3 & 5 & -8 & 13 & -21 & \cdots\end{array}$
(c) $\begin{array}{ccccccccc}0 & 1 & 2 & 3 & 6 & 11 & 20 & 37 & \ldots \\ & c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{6} & c_{7} & c_{8} \\ \ldots\end{array}$

3.9 Project

1. One way to speed up the computation of the Fibonacci numbers, is to use a different algorithm. A much more efficient algorithm is based on the following identities.

$$
\begin{aligned}
F_{1} & =1 \\
F_{2} & =1 \\
F_{2 n} & =2 F_{n-1} F_{n}+F_{n}^{2}, \quad \text { for } \quad n \geq 1 \\
F_{2 n+1} & =F_{n+1}^{2}+F_{n}^{2}, \quad \text { for } \quad n \geq 1
\end{aligned}
$$

Program a Fibonacci number generating function using these identities.
2. ReplaceRepeated: A transformation (substitution) rule (/.) is applied only once to each part of an expression. For example, the product of x and y below is replaced by the sum of x and y, but this is only done for the first such occurrence that matches.

$$
\begin{array}{ll}
\operatorname{In}[]: & \mathrm{a} \mathrm{~b} \mathrm{c} \mathrm{~d} \mathrm{/.} \mathrm{x}_{-} \mathrm{y}_{-}->\mathrm{x}+\mathrm{y} \\
\operatorname{Out}[]: & \mathrm{a}+\mathrm{bcd}
\end{array}
$$

In order to apply one or more transformation rules repeatedly to an expression until the expression no longer changes, ReplaceRepeated (//.) is used. Using ReplaceRepeated, the rule is applied repeatedly until the expression no longer changes. For example,

$$
\operatorname{In}[]: \quad \mathrm{a} b \mathrm{c} d / / . \quad \mathrm{x}_{-} \mathrm{y}_{-}->\mathrm{x}+\mathrm{y}
$$

$$
\operatorname{Out}[]: \quad a+b+c+d
$$

3. Write rules for a function \log (note lowercase) that encapsulate the following identities:
(a) $\log (a b)=\log (a)+\log (b)$
(b) $\log (a / b)=\log (a)-\log (b)$
(c) $\log \left(\mathrm{a}^{\mathrm{n}}\right)=\mathrm{n} \log (\mathrm{a})$
4. Read about the command Input, then write a code that asks the user to enter the temperature in Fahrenheit (F) and print its corresponding Celsius (C) value using the command Print. The formula of conversion is $C=\frac{F-32}{1.8}$.

4 Lists

4.1 What is a List?

A list in Mathematica is an expression whose elements are separated by commas and enclosed in \{ curly braces \}. The elements of a list can be of any type, and need not be all of the same type. For example:

$$
\begin{aligned}
& \{2,5,7,10,-3,-25\} \\
& \{\text { "good", 17, }\{23,89\}\}
\end{aligned}
$$

Lists are important structures in Mathematica. Many of Mathematica's inputs and outputs are expressed using lists.

Lists respect order, so that $\{1,2\}$ is not the same as $\{2,1\}$ in Mathematica. Also, a list can contain a copy of the same object several times, so $\{1,2,1\}$ is defer from $\{1,2\}$.

One of the nice features of Mathematica is that it often allows us to perform operations simultaneously on each element of a list with a natural syntax, especially when the elements of the list are numerical.
Example 4.1. For the list of the first five positive integers do the following.

1. add 6 to each element.

$$
\begin{aligned}
\operatorname{In}[]: & \{1,2,3,4,5\}+6 \\
\operatorname{Out}[]: & \{7,8,9,10,11\}
\end{aligned}
$$

2. multiply each element by -3 .

$$
\begin{aligned}
\operatorname{In}[]: & -3 *\{1,2,3,4,5\} \\
\operatorname{Out}[]: & \{-3,-6,-9,-12,-15\}
\end{aligned}
$$

3. rise each element to the power 5 .

$$
\begin{aligned}
\operatorname{In}[]: & \{1,2,3,4,5\}^{\wedge} 5 \\
\operatorname{Out}[]: & \{1,32,243,1024,3125\}
\end{aligned}
$$

4. divide 120 by each element.

$$
\begin{aligned}
\operatorname{In}[]: & 120 /\{1,2,3,4,5\} \\
\text { Out [] }: & \{120,60,40,30,24\}
\end{aligned}
$$

If two lists have the same number of elements, we can add, subtract, multiply and divide them together element by element. For example

$\operatorname{In}[]:$	$\{1,2,3\}+\{3,1,4\}$
Out []$:$	$\{4,3,7\}$
$\operatorname{In}[]:$	$\{3,4\} \wedge\{2,3\}$
Out []$:$	$\{9,64\}$
$\operatorname{In}[]:$	$\{1,2,3\} *\{3,1,4\}$
Out []$:$	$\{3,2,12\}$

4.2 Functions Producing Lists

Mathematica provides us with commands for which the output is a list. These commands have a nature of repetition and replace loops in procedural programming.

Range

Range[imax]
generates the list $\{1,2, \ldots$, imax $\}$
Range[imin,imax]
generates the list \{imin, ..., imax\}
Range[imin,imax, di]
uses step di

Table

Table[expr,\{i, imax\}]
generates a list of the values of expr when i runs from 1 to imax
Table[expr,\{i, imin, imax\}]
starts with i = imin
Table[expr,\{i, imin, imax, di\}]
uses step di
Table[expr,\{i, \{i1, i2, ...\}\}]
uses the successive values i1, i2,...

Table[expr, n]

generates a list of n copies of expr.

Example 4.2. Produce the list of

1. the first ten integers
```
In[]: Range[10]
In[]: Table[i,{i, 10}]
Out[]: {1,2,3,4,5,6,7, 8, 9, 10}
```

2. the first 10 even integers
```
In[]: Range[2,20,2]
In[]: 2*Range[10]
In[]: Table[2i,{i, 10}]
Out[]: {2,4,6,8,10,12,14,16,18,20}
```

3. the reciprocal of the first 10 odd integers

In [] :	$1 /$ Range $1,20,2]$
In [] :	Table[1/(2 i-1), $\{i, 10\}]$
Out []:	$\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \frac{1}{11}, \frac{1}{13}, \frac{1}{15}, \frac{1}{17}, \frac{1}{19}\right\}$

4.3 Displaying Lists

The default output form of a list, like its input form, uses the curly brace notation.

$$
\{1,2,3\}
$$

Several formatting functions are available for displaying lists in different forms. For example, TableForm is useful for displaying nested lists (multi-dimensional data) in a simple rectangular array.

```
In[]: TableForm[{1,2,3}]
Out[]: 1
    2
    3
In[]: {{"A","B","C"},{1,2,3}} // TableForm
Out[]: A B C
    1 2 3
```

Another useful function for displaying nested lists is Grid. It contains numerous options specifically for formatting tabular data.

```
In[]: Grid[{{"A","B","C"},{1,2,3}}]
Out[]: A B C
    1 2 3
```


4.4 Working with Elements of a List

Mathematica lets you work with the elements of a list directly. You can do this using either the Part command, or - as a shortcut - the double square brackets [[]] notation. For example, suppose we're given the following definition of a list:

```
In[]: mylist = {"good",17,{23,89}};
```

Then

```
In[]: mylist[[2]]
Out[]: 17
    In[]: Part[mylist,3]
Out[]: {23,89}
In[]: mylist[[3,2]]
Out[]: 89
```

Example 4.3. Consider the list of the 26-English letters from "a" to "z". You can use the command CharacterRange to generate such list.

```
In[]: letters = CharacterRange["a", "z"]
Out[]: {a,b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}
```

1. Obtain the second element from the end of the list letters.
```
In []: letters[[-2]]
Out[]: y
```

2. Pick out the 3rd, 10th, and the last characters in the list letters.
```
In[]: letters[[{3, 10, -1}]]
Out[]: {c,j,z}
```

3. Find all the characters from the 11th character to the 21 th character in the list letters.

$$
\begin{array}{cl}
\operatorname{In}[]: & \text { letters[[11 ; ; 21]] } \\
\operatorname{Out}[]: & \{\mathrm{k}, \mathrm{l}, \mathrm{~m}, \mathrm{n}, \mathrm{o}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{~s}, \mathrm{t}, \mathrm{u}\}
\end{array}
$$

4.5 Pseudorandom Numbers

The Wolfram Language has several different random number functions to generate random numbers in various ranges, domains, and distributions. Three functions for generating pseudorandom numbers that are distributed uniformly over a range of values: RandomReal, RandomInteger, RandomComplex. In this section, we are interested in random integers.

RandomInteger[]	pseudorandomly gives 0 or 1.
RandomInteger[imax]	gives a pseudorandom integer in the range $\{0, \cdots, i m a x\}$.
RandomInteger[\{imin,imax $\}]$	gives a pseudorandom integer in the range \{imin, imax
	gives a list of n pseudorandom integers in the range \{imin, imax $\}.$

Example 4.4. Pick four random integers between -3 and 9 .
In []: RandomInteger $[\{-3,9\}, 4]$
Out[]: $\{3,-2,7,5\}$
Each time you ask, you get another random numbers:

$$
\begin{aligned}
\operatorname{In}[]: & \text { RandomInteger }[\{-3,9\}, 4] \\
\text { Out []: } & \{-1,0,-2,8\}
\end{aligned}
$$

Note The sequences that you get from RandomInteger are in fact produced by applying a definite Mathematical algorithm, starting from a particular "seed". If you want to make sure that you always get the same sequence of pseudorandom numbers, you can explicitly give a seed for the pseudorandom generator, using SeedRandom[s] with the integer s.

If you reseed the pseudorandom generator with the same seed, you get the same sequence of pseudorandom numbers:

$$
\begin{aligned}
\text { In [] : } & \text { SeedRandom[143]; RandomInteger [100, 5] } \\
\text { Out []: } & \{14,22,92,70,91\}
\end{aligned}
$$

Putting both the Seed and the RandomInteger commands in the same input cell (or the same line of code) resulting the same sequence of generated random numbers permanently. But, what if the Seed command is in an input cell, while the RandomInteger is in the following input cell? In this case, the sequence of random numbers will be changed each time you execute the line that contains the random command. The results of this series of executions repeat themselves each time you open the file or re-execute the line that contains the Seed.

Random Samples Additional functions are available for generating random samples from lists, with or without replacement. For example, RandomChoice selects elements from a list with replacement. That can be a list of numbers or any arbitrary expressions.

```
In[]: RandomChoice[\{"A", "B", "C"\}, 5]
Out[]: \(\quad\{B, A, B, C, A\}\)
```

RandomSample, on the other hand, selects without replacement and so its output is limited by the size of the list from which you are selecting. For example, this generates 6 random numbers from the first 10 integers.

$$
\begin{aligned}
\text { In [] : } & \text { RandomSample[Range[10], 6] } \\
\text { Out []: } & \{2,1,10,6,5,8\}
\end{aligned}
$$

Weights can be assigned in both RandomChoice and RandomSample. This chooses ten 0's and 1's, with a 25% chance of a 0 being chosen and a 75% chance of a 1 .

```
In []: RandomChoice[\{0.25, 0.75\(\} \rightarrow\{0,1\}, 10]\)
Out[]: \(\quad\{0,1,1,0,1,1,0,1,1,1\}\)
```


4.6 Useful Functions

We will list many of the commands we additionally use to manipulate lists and their elements. All of the following examples will be demonstrated using the list newlist generated by 25 random integers between 0 and 10 using seed $=5$:

$$
\begin{array}{cl}
\text { In [] : } & \text { SeedRandom[5]; newlist = RandomInteger [10, 25] } \\
\text { Out []: } & \{0,0,3,3,4,5,1,9,1,0,10,5,1,8,0,5,9,5,3,7,3,5,8,6,7\}
\end{array}
$$

- Length reports the number of elements in a list.

```
In[]: Length[newlist]
Out[]: 25
```

- Sort will arrange the elements of the list in the natural increasing order of the elements.

```
In[]: newlist//Sort
Out[]: {0, 0, 0, 0, 1, 1, 1, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 6,7,7, 8, 8, 9, 9, 10}
```

- Reverse will reverses the order of the elements in a list.

In []: Reverse@Sort@newlist
Out[]: $\quad\{10,9,9,8,8,7,7,6,5,5,5,5,5,4,3,3,3,3,1,1,1,0,0,0,0\}$

- Count will show how many times a particular item appears in a list.

```
In[]: Count[newlist, 3]
Out[]: 4
```

- Total gives the total (sum) of the elements in list.

```
In[]: Total@newlist
Out[]: 108
```


4.7 Listable Functions

There are times when we would like to apply a function to all the elements of a list. Suppose f is a function and $\{a, b, c\}$ is a list. We want to be able to "push" the function f inside the list and get $\{f[a], f[b], f[c]\}$. Many of Mathematica's built-in functions have the property that they simply "go inside" a list. A function with this property is said to be listable. For example, All the arithmetic functions are listable, also Sqrt is a listable function.

```
In[]: Sqrt@{1, 4, 9}
Out[]: {1,2,3}
```

Should all operations and commands be listable ? The answer is clearly "no." The simplest example of a command that should not be listable is the Reverse command.

```
In[]: Reverse[\{\{1, 2\}, \(\{9,10\}\}]\)
Out []: \(\quad\{\{9,10\},\{1,2\}\}\)
```

Indeed, if Reverse were listable, the output above would instead have be treated as $\{\{2,1\},\{10,9\}\}$. The Reverse command should not be listable because it acts on the structure of the list as a whole. It is not designed to act individually on each element of a list. This observation brings us to the Map command.

Map The Map command can be used to force listability of any command/function and allow it to act on each element of a list. This command has the form:

```
Map[ function name , list ]
```

As an example,

$$
\begin{aligned}
\operatorname{In}[]: & \text { Map[Reverse, }\{\{1,2\},\{9,10\}\}] \\
\text { Out [] }: & \{\{2,1\},\{10,9\}\}
\end{aligned}
$$

The equivalent shorthand to apply a function to a list is /@ as follows

$$
\begin{aligned}
\operatorname{In}[]: & \text { Reverse } / @\{\{1,2\},\{9,10\}\} \\
\operatorname{Out}[]: & \{\{2,1\},\{10,9\}\}
\end{aligned}
$$

Example 4.5. Consider the list

$$
\text { newlist }=\{0,0,3,3,4,5,1,9,1,0,10,5,1,8,0,5,9,5,3,7,3,5,8,6,7\}
$$

Suppose we want to count how many times the numbers 6 and 3 appear in the list, we will get unexpected answer using Count:

```
In[]: Count[newlist, {6, 3}]
Out[]: 0
```

This is because Count searches inside the list newlist for an expression like $\{6,3\}$ which does not exist. The correct way to do the job is as follows:

```
In[]: Count[newlist, #] & /@ {6, 3}
Out[]: {4,1}
```


4.8 Nested Loops

Let $f(x)$ be a function defined on a variable x. There are times when one needs to apply the function f to itself several times, i.e., $f(\cdots f(f(x)) \cdots)$. Mathematica provides a command to do exactly this:

```
Nest[f, expr, n]
gives an expression with \(f\) applied \(n\) times to expr.
```

For example,

$$
\begin{aligned}
\operatorname{In}[]: & \text { Nest[f, x, 4] } \\
\text { Out []: } & f(f(f(f(x))))
\end{aligned}
$$

If one wants to keep track of each step, the command NestList is available

$$
\begin{aligned}
\operatorname{In}[]: & \text { NestList[f, } x, 4] \\
\operatorname{Out}[]: & \{x, f(x), f(f(x)), f(f(f(x))), f(f(f(f(x))))\}
\end{aligned}
$$

Here is a nice example:

$$
\begin{array}{ll}
\operatorname{In}[]: & \text { NestList }[\operatorname{Sqrt}[6+\#] \&, \operatorname{Sqrt}[6], 3] \\
\text { Out [] : } & \{\sqrt{6}, \sqrt{\sqrt{6}+6}, \sqrt{\sqrt{\sqrt{6}+6}+6}, \sqrt{\sqrt{\sqrt{\sqrt{6}+6}+6}+6}\}
\end{array}
$$

Sometimes we want to start with expr, then repeatedly applies a function f until applying test to the result no longer yields True. This is can be done using NestWhile or NestWhileList. For example, we want to keep dividing an integer by 2 until the result is no longer an even number:

```
In[]: NestWhile[#/2 &, 123456, EvenQ]
Out[]: 1929
In[]: NestWhileList[#/2 &, 123456, EvenQ]
Out[ ]: {123456, 61728, 30864, 15432, 7716, 3858, 1929}
```

Example 4.6. Recall that the Collatz function, for any integer n, returns $3 n+1$ for odd n, and $n / 2$ for even n. We investigated the Collatz function earlier in Example 3.6 of Chapter 3. The Collatz Conjecture is the statement that, for any initial positive integer n, the iterates of the Collatz function always reach the cycle $4,2,1, \cdots$. Create the function ColzSeq[n] that lists the iterates of the auxiliary Collatz function.

```
In []: colz[n_Integer?EvenQ] := \(\mathrm{n} / 2\);
In []: colz[n_Integer?OddQ] := \(3 \mathrm{n}+1\);
In []: ColzSeq[n_Integer?Positive] := NestWhileList[colz, n, \#>1 \&]
Out [ ]: \(\quad\{7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1\}\)
```

Example 4.7. A point p is a fixed point of a function f if p belongs to both the domain and the codomain of f, and $f(p)=p$. For example, $p=2$ is a fixed point of $f(x)=x^{2}-3 x+4$, because $f(2)=2$.

1. Create the function fixedpoint $[\mathrm{p} 0, \mathrm{n}]$ that approximates the fixed point giving the results of applying f repeatedly n-times, starting with p 0 .
```
\(\operatorname{In}[]: f\left[x_{-}\right]:=x^{\wedge} 2-3 x+4 ;\)
In []: fixedpoint[p0_, n_] := Nest[f, p0, n]
In[]: fixedpoint[1, 3]
Out[]: 2
```

2. Modify on the fixedpoint [p0,n] to generate a list giving the results of applying f repeatedly until successive results are within an error err.
```
In[]: f[x_] := x^2 - 3 x + 4;
In[]: fixedpoint[p0_, err_] := NestWhileList[f,p0,Abs[#1-#2]>err&,2]
In[]: fixedpoint[1.15, 0.01]
Out[ ]: {1.15,1.8725,1.88876,1.90113,1.91091}
```


4.9 Vectors

Vectors in Mathematica are represented by lists. There is no need to specify if a particular vector is a row vector or column vector; this makes things easier for the user and keeps the focus on the result instead of Mathematical bookkeeping.

Vectors can be constructed explicitly or programmatically. To define a vector manually, just create a list. For example, the vectors $\mathrm{v}=(2,3)$ and $\mathrm{u}=(-1,1,2)$ are entered as

```
In[]: \(v=\{2,3\}\)
Out[]: \(\{2,3\}\)
\(\operatorname{In}[]: u=\{-1,1,2\}\)
Out[]: \(\quad\{-1,1,2\}\)
```

To define a vector programmatically, use Table.

$$
\begin{aligned}
\operatorname{In}[]: & \text { Table }\left[i^{\wedge} 2,\{i, 1,10\}\right] \\
\operatorname{Out}[]: & \{1,4,9,16,25,36,49,64,81,100\}
\end{aligned}
$$

There is also a function, Array, that constructs a vector from a function. Table can do this as well, but it requires specification for the iterator, while Array assumes the iterator and only requires its bound. For example,

```
\(\operatorname{In}[]: \quad \mathrm{f}\left[\mathrm{x}_{-}\right]:=\mathrm{x}^{\wedge} 2\);
In []: Array[f, 10]
Out []: \(\quad\{1,4,9,16,25,36,49,64,81,100\}\)
```

or, you may use the pure function as follows.

```
In[]: Array[#^2 &, 10]
Out[]: {1,4,9,16,25,36,49,64,81,100}
```

Mathematical operations like addition + , subtraction -, multiplication $*$, division /, and exponentiation - can operate on vectors of the same length. The operations are applied element-wise, so the operation is performed on the first two elements of the vector, then the operation is performed on the second two elements of the vector, and so on.

Example 4.8. Let $\mathbf{u}=(2,3,7)$ and $\mathbf{v}=(7,1,5)$. Find $5 \mathbf{u}-2 \mathbf{v}$

$$
\begin{aligned}
\operatorname{In}[]: & \mathrm{u}=\{2,3,7\} ; \mathrm{v}=\{7,1,5\} ; \\
\operatorname{In}[]: & 5 \mathrm{u}-2 \mathrm{v} \\
\text { Out }[]: & \{-4,13,25\}
\end{aligned}
$$

The Dot Product You compute the dot product of two vectors using the Dot command:

```
\(\operatorname{In}[]: \operatorname{Dot}[\{1,2,3\},\{-4,7,0\}]\)
Out[]: 10
```

Sometimes new users expect the multiplication of two vectors to give the dot product instead of performing element-wise multiplication.

The Cross Product To compute a cross product of two vectors in \mathbb{R}^{3} (also known as the vector product), you use the Cross command.

```
In []: Cross[\{1, 2, 3\},\{-4, 7, 0\}]
Out []: \(\quad\{-21,-12,15\}\)
```

Length and Angle of Vectors The length, or the norm, of the vector $u=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ is

$$
\|u\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

In Mathematica, we use the command Norm to find the vector length. For example,

```
In[]: Norm[{1, 2, 1}]
Out[]: \sqrt{}{6}
```

Also the angle between two vectors u and v can be found using the command VectorAngle. For example,

```
In[]: VectorAngle[{1, 1}, {1, 0}]
Out[]: }\frac{\pi}{4
In[]: VectorAngle[{1, 1, 0}, {1, 0, 2}]
Out []: }\mp@subsup{\operatorname{cos}}{}{-1}(\frac{1}{\sqrt{}{10}}
```


4.10 Matrices

Like vectors, matrices can be comprised of any sort of expression: symbols, numbers, strings, and images, and even mixtures thereof. Matrices are constructed by creating nested lists. Small matrices can be manually entered by typing, and the simplest method is to create a nested list in one-dimensional format using list notation by entering each row as a list, beginning with the first row. That is, a matrix is entered in the form:

$$
\{\text { list of row } 1 \text {, list of row } 2, \ldots\}
$$

For example, the matrix $\left[\begin{array}{rrr}3 & -4 & 7 \\ -1 & 0 & 5\end{array}\right]$ is entered in Mathematica as follows:

$$
\operatorname{In}[]: \quad\{\{3,-4,7\},\{-1,0,5\}\}
$$

We can use MatrixForm to display the result in two-dimensional format.

$$
\begin{aligned}
\operatorname{In}[]: & \{\{3,-4,7\},\{-1,0,5\}\} / / \text { MatrixForm } \\
\text { Out [] : } & \left(\begin{array}{ccc}
3 & -4 & 7 \\
-1 & 0 & 5
\end{array}\right)
\end{aligned}
$$

Matrices can also be entered with palettes like the Basic Math Assistant. The Basic Commands section of the palette has a tab for matrix commands, including a button that will paste an empty 2×2 matrix into a notebook. There are buttons to add rows and columns to newly created matrices, providing users with an interactive way to construct a template for a larger matrix. For example, clicking the matrix button to create a 2×2 matrix template and then clicking the Add Row and Add Column buttons once each will create a blank 3×3 matrix template as seen in the following figure.

Programmatic creation of matrices can be accomplished using functions like Table and Array as shown in the following examples.

Example 4.9. Define a 3×4 matrix $\left(a_{i j}\right)$ where $a_{i j}=i+j$.

$$
\begin{aligned}
& \text { In [] : } \operatorname{Table[i+j,\{ i,3\} ,\{ j,4\}]//\text {MatrixForm}} \\
& \text { Out []: } \quad\left(\begin{array}{rrrr}
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{array}\right) \\
& \text { In [] : Array[\#1 }+\# 2 \&,\{3,4\}] / / \text { MatrixForm } \\
& \text { Out [] : } \quad\left(\begin{array}{rrrr}
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{array}\right)
\end{aligned}
$$

Example 4.10. Write a code that generates the matrix $\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25\end{array}\right]$

$\operatorname{In}[]:$	$\operatorname{Table}[j+5(i-1),\{i, 1,5\},\{j, 1,5\}]$
$\operatorname{In}[]:$	Array $[\# 2+5(\# 1-1) \&,\{5,5\}]$
$\operatorname{In}[]:$	Partition[Range[25], 5]

Note that the command Partition[list, n] partitions a list into nonoverlapping sublists of length n .

4.11 Special Types of Matrices

There are special commands in Mathematica for matrices with special structures like identity matrices, constant matrices, and the triangular matrices (upper, lower, and diagonal).

1. The command ConstantArray [c, n] generates a list (vector) of n copies of the element c. While ConstantArray $[\mathrm{c},\{\mathrm{m}, \mathrm{n}\}]$ generates an $\mathrm{m} \times \mathrm{n}$ array of nested lists containing copies of the element c. For example,

$$
\begin{aligned}
\text { In []: } & \text { ConstantArray }[3,10] \\
\text { Out []: } & \{3,3,3,3,3,3,3,3,3,3\} \\
\text { In []: } & \text { ConstantArray }[10,\{2,3\}] / / \text { MatrixForm } \\
\text { Out []: } & \left(\begin{array}{lll}
10 & 10 & 10 \\
10 & 10 & 10
\end{array}\right)
\end{aligned}
$$

2. The identity matrix, or a unit matrix, of size n is the $n \times n$ square matrix with ones on the main diagonal and zeros elsewhere. IdentityMatrix[n] gives the $\mathrm{n} \times \mathrm{n}$ identity matrix. For example,

$$
\begin{array}{cl}
\text { In []: } & \text { IdentityMatrix[2] // MatrixForm } \\
\text { Out []: } & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{array}
$$

3. A diagonal matrix is a matrix (usually a square matrix) in which the off-diagonal elements are all zero. The main diagonal entries themselves may or may not be zero. The command DiagonalMatrix [list] gives a matrix with the elements of list on the leading diagonal, and 0 elsewhere. For example, the diagonal matrix of the first 4 positive even integrs is

$$
\begin{aligned}
\text { In [] : } & \text { DiagonalMatrix[2 Range [4]] // MatrixForm } \\
\text { Out []: } & \left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 8
\end{array}\right)
\end{aligned}
$$

4. A triangular matrix is a special kind of square matrix. A square matrix is called lower triangular if all the entries above the main diagonal are zero. Similarly, a square matrix is called upper triangular if all the entries below the main diagonal are zero. A triangular matrix is one that is either lower triangular or upper triangular. A matrix that is both upper and lower triangular is called a diagonal matrix.

Example 4.11. Construct the 3×3 upper triangular matrix whose elements follow the rule $a_{i j}=$

$$
\begin{aligned}
& \left\{\begin{array}{lll}
2 i-j & : & i \leq j \\
0 & : & i>j
\end{array} .\right. \\
& \operatorname{In}[]: \quad a\left[i_{-}, j\right]:=2 i-j / ; i<=j \\
& \operatorname{In}[]: a\left[i_{-}, j_{-}\right]:=0 \\
& \text { In []: Table[a[i,j], \{i, 3\}, \{j, 3\}] // MatrixForm } \\
& \text { Out[]: }\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right)
\end{aligned}
$$

To generate the lower triangular matrix, just change the inequality sings in a_{ij}.

$$
\begin{array}{ll}
\operatorname{In}[]: & a\left[i_{-}, j_{-}\right]:=2 i-j / ; i>=j \\
\operatorname{In}[]: & a\left[i_{-}, j\right]:=0 \\
\operatorname{In}[]: & \text { Table[a[i,j], }\{i, 3\},\{j, 3\}] / / \text { MatrixForm } \\
\text { Out }[]: & \left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 2 & 0 \\
5 & 4 & 3
\end{array}\right)
\end{array}
$$

4.12 Basic Matrix Operations

Mathematica can do addition, subtraction, scalar multiplication, and matrix multiplication with the opera-tors,,$+- *$, and ., respectively, in addition to many other matrix computations like the determinant, the transpose, and the inverse. To see how Mathematica operates with these computations, let

$$
\mathrm{A}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] \quad \mathrm{F}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \quad \mathrm{G}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

and define them in Mathematica as a two-dimensional lists as follows. Care must be taken, however, not to use //MatrixForm in the definition of the matrix. This command is for display purposes only.

```
\(\operatorname{In}[]: A=\{\{1,2\},\{3,6\}\} ;\)
In[]: \(B=\{\{5,6\},\{7,8\}\} ;\)
In[]: \(F=\{\{1,2\},\{3,4\},\{5,6\}\} ;\)
\(\operatorname{In}[]: G=\{\{1,2,3\},\{4,5,6\}\},\{7,8,9\}\} ;\)
```

Then,

1. $\operatorname{In}[]: \mathrm{A}+\mathrm{B}$

Out []: $\quad\left(\begin{array}{cc}6 & 8 \\ 10 & 14\end{array}\right)$
Addition, here, is defined since A and B have the same size. If we add the matrix A to G then the result is undefined since they are different in size.

In[]: A + G
Out[]: Objects of unequal length and cannot be combined
2. $\operatorname{In}[]: 3 \mathrm{~B}-2 \mathrm{~A}$

Out[]: $\quad\left(\begin{array}{ll}13 & 14 \\ 15 & 12\end{array}\right)$
3. In[]: A B // MatrixForm

Out[]: $\quad\left(\begin{array}{cc}5 & 12 \\ 21 & 48\end{array}\right)$
Be careful! This command evaluates the product as element by element product, not the ordinary (dot) product you have learned in Linear Algebra class. To perform the ordinary product, we use the command Dot as follows.

In[]: Dot[A, B] // MatrixForm
Out[]: $\quad\left(\begin{array}{ll}19 & 22 \\ 57 & 66\end{array}\right)$
Note that the dot product above is defined since the number of columns of the first matrix A equals the number of rows in the second matrix B. This case is not satisfied when try to evaluate A F F for example.
In []: Dot[A, F] // MatrixForm
Out[]: $\{\{1,2\},\{3,6\}\}$ and $\{\{1,2\},\{3,4\},\{5,6\}\}$ have incompatible shapes.
What if you like to find A^{5} ? If we use the command $A^{\wedge} 5$, this will rise each element of A to the power 5 as follows.
In []: A~5
Out []: $\quad\left(\begin{array}{cc}1 & 32 \\ 243 & 7776\end{array}\right)$
The command MatrixPower [A, n] gives the $\mathrm{n}^{\text {th }}$ matrix power of the matrix A by the mean of ordinary product.
In []: MatrixPower [A, 5]
Out []: $\quad\left(\begin{array}{cc}2401 & 4802 \\ 7203 & 14406\end{array}\right)$
4. The transpose of an $m \times n$ matrix C is another matrix of size $n \times m$ denoted by C^{T} and created by writing the rows of C as columns of C^{T} in the same order. For example, G^{T} is
In[]: Transpose[G] // MatrixForm
Out []: $\left(\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right)$
5. The determinant is a useful value that can be computed from the elements of a square matrix. It can be computed in Mathematica with the function Det. For example,
$\operatorname{In}[]: \operatorname{Det} / @\{A, B, G\}$
Out[]: $\quad\{0,-2,0\}$
6. An $n \times n$ square matrix A is called invertible (also nonsingular) if there exists an $n \times n$ square matrix B such that $A B=B A=I_{n}$ where I_{n} denotes the $n \times n$ identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix B is uniquely determined by A and
is called the inverse of A , denoted by A^{-1}. The inverse can be computed in Mathematica with the function Inverse. For example,
In[]: Inverse[B] // MatrixForm
Out []: $\quad\left(\begin{array}{cc}-4 & 3 \\ \frac{7}{2} & -\frac{5}{2}\end{array}\right)$
A square matrix that is not invertible is called singular. A square matrix is singular if and only if its determinant is 0 . We have seen that $\operatorname{Det}[\mathrm{G}]=0$, so that G is singular matrix.
In[]: Inverse[G]
Out[]: Matrix $\{\{1,2,3\},\{4,5,6\},\{7,8,9\}\}$ is singular
7. The trace of an $n \times n$ square matrix A is defined to be the sum of the elements on the main diagonal. The command $\operatorname{Tr}[\mathrm{C}]$ finds the trace of the square matrix C .
$\operatorname{In}[]: \operatorname{Tr} / @\{\mathrm{~A}, \mathrm{~B}, \mathrm{G}\}$
Out[]: $\{7,13,15\}$
8. The solution of the eigenvalue problem is one of the major areas for matrix computations. For an $\mathrm{n} \times \mathrm{n}$ matrix C , the eigenvalues are the n roots of its characteristic polynomial $\mathrm{p}(\lambda)=\operatorname{det}\left(\lambda \mathrm{I}_{\mathrm{n}}-\mathrm{C}\right)$. For each eigenvalue λ there exists at least one corresponding vector x that satisfies $C x=\lambda x$ and it is called an eigenvector. Mathematica has various functions for computing eigenvalues and eigenvectors.

The command Eigenvalues [C] gives a list of the eigenvalues of the square matrix C. Also, the command Eigenvectors [C] gives a list of the eigenvectors of the square matrix C . You can find a list of the eigenvalues and eigenvectors of the square matrix C in one command, which is Eigensystem [C]. The characteristic polynomial for the matrix C with respect to the variable x can be found using CharacteristicPolynomial [C, x]. Note that the characteristic polynomial has the determinant and the trace of the matrix as coefficients.

```
In []: Eigenvalues [B]
Out [ ]: \(\quad\left\{\frac{1}{2}(\sqrt{177}+13), \frac{1}{2}(13-\sqrt{177})\right\}\)
In []: Eigenvectors [B]
Out []: \(\quad\left(\begin{array}{cc}\frac{1}{14}(\sqrt{177}-3) & 1 \\ \frac{1}{14}(-\sqrt{177}-3) & 1\end{array}\right)\)
In []: Eigensystem[B]
Out [ ]: \(\left(\begin{array}{cc}\frac{1}{2}(\sqrt{177}+13) & \frac{1}{2}(13-\sqrt{177}) \\ \left\{\frac{1}{14}(\sqrt{177}-3), 1\right\} & \left\{\frac{1}{14}(-\sqrt{177}-3), 1\right\}\end{array}\right)\)
In []: CharacteristicPolynomial[B, x]
Out[]: \(\quad x^{2}-13 x-2\)
```


4.13 Exercises

1. Produce the following lists:
(a) The square of the reciprocal of the first 12 integers
(b) The tuples that contains $\mathrm{n}, \mathrm{n}^{2}, \mathrm{n}^{3}$ from $\mathrm{n}=1$ to $\mathrm{n}=6$
2. Sort the list in exercise (1a) in ascending order.
3. Find the total of the elements in the list in exercise (1a), and write your answer in numerical form using 50 decimal digits.
Ans. 1.5649766384209024901665594306286946979587672228365
4. Find the value of $\sin \mathrm{x}$ when $\mathrm{x}=\left\{\pi, \frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{4}, \frac{\pi}{5}, \frac{\pi}{6}\right\}$.

Ans. $\left\{0,1, \frac{\sqrt{3}}{2}, \frac{1}{\sqrt{2}}, \sqrt{\frac{5}{8}-\frac{\sqrt{5}}{8}}, \frac{1}{2}\right\}$
5. For the list $\{\{1,2\},\{3,4\},\{5,6\},\{7,8\},\{9,10\}\}$
(a) reverse its elements,
(b) reverse the interior sub-lists only,
(c) reverse the list and each of its interior elements.
6. Which of the following functions is listable?
(a) Length
(b) Total
(c) Piecewise functions
7. How to generate a list such as follows using Mathematica?

$$
\{\{1\},\{1,2\},\{1,2,3\},\{1,2,3,4\},\{1,2,3,4,5\}\}
$$

8. Generate list of 30 integers between -5 and 5 using seed value equals 372 .

- Count the number of 0 's.

Ans. 4

- Find a way to count all those elements of the list which are not 1's. Read more about Except. Ans. 27

9. When Newton's method is used to compute $\sqrt{R} ; R>0$ (by solving the equation $x^{2}=R$), the sequence of iterates is defined by

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{R}{x_{n}}\right)
$$

Write a code to generate a list giving the results of applying Newton's formula repeatedly to approximate $\sqrt{2}$ until successive results are within an error 0.0001 with at most 10 -steps. Ans. $\{0.5,2.25,1.56944,1.42189,1.41423,1.41421\}$
10. Use the built-in functions FixedPoint and FixedPointList to resolve the parts in Example 4.7.
11. Consider the 5×5 tridiagonal matrix $\mathrm{A}=\left[\begin{array}{ccccc}2 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 2\end{array}\right]$
(a) Use ToeplitzMatrix to write a code that generates such matrix.
(b) Find the determinant of the matrix A .

Ans. 6
(c) Find the matrix A^{-2}

$$
\text { Ans. }\left[\begin{array}{ccccc}
55 / 36 & -20 / 9 & 9 / 4 & -16 / 9 & 35 / 36 \\
-20 / 9 & 34 / 9 & -4 & 29 / 9 & -16 / 9 \\
9 / 4 & -4 & \frac{19}{4} & -4 & 9 / 4 \\
-16 / 9 & 29 / 9 & -4 & 34 / 9 & -20 / 9 \\
35 / 36 & -16 / 9 & 9 / 4 & -20 / 9 & 55 / 36
\end{array}\right]
$$

(d) A symmetric matrix is a square matrix that is equal to its transpose. Show that A is symmetric.
12. The Hilbert matrix is a square matrix whose element $a_{i j}$ is $\frac{1}{i+j-1}$. Construct the Hilbert matrix of order 5 .
13. Find a unit vector having the same direction as $\mathrm{v}=(1,-2,2,-3)$.

Hint: see the command Normalize.
Ans. $(1 / 3 \sqrt{2},-\sqrt{2} / 3, \sqrt{2} / 3,-1 / \sqrt{2})$
14. The vector projection of a vector a on (or onto) a nonzero vector b (also known as the vector component of a in the direction of b) is the orthogonal projection of a onto a straight line parallel to b. It is a vector parallel to b, defined as $a \cdot \frac{b}{|b|}$ where the operator • denotes a dot product, and $|b|$ is the length of $|\mathrm{b}|$. Find the projection of the vector $\mathrm{a}=(1,2,3)$ onto the vector $\mathrm{b}=(1,-2,5)$.
Hint: see the command Projection.
Ans. $(2 / 5,-4 / 5,2)$
15. Show that for any 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, where $a, b, c, d \in \mathbb{R}$, the following statement is hold:

$$
\mathrm{p}_{\mathrm{A}}(\mathrm{x})=\mathrm{x}^{2}-\operatorname{tr}(\mathrm{A})+\operatorname{det}(\mathrm{A})
$$

where $p_{A}(x)$ is the characteristic polynomial of the matrix A.
16. The Cayley-Hamilton theorem, says that every square matrix satisfies its characteristic equation. Verify the Cayley-Hamilton theorem for the matrix of $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
17. Consider the following data:

$$
\text { data }=\{13,15,15,8,16,20,28,19,18,15,21,23,30,17,10,16,15,16,20,15\}
$$

Use Mathematica documentation to find for data the: Mean, Median, Variance, and StandardDeviation. Ans. 35/2, 16, 529/19, 23/ $\sqrt{19}$
18. Consider the following data: data $=\{\{3,4\},\{6,6\},\{-1,5\},\{2,9\},\{4,0\},\{1,3\}\}$. Find the regression line equation that best fits the data.
Hint: see the command Fit
Ans. $4.79661-0.118644 \mathrm{x}$

4.14 Project

Write a code that compresses a list by dividing it into runs of occurrences of a single element, and returns a list of the runs, each represented as a pair containing the element and the length of its run. So the following list,
$\{9,9,9,9,9,1,5,5,5,1,1,1,1,2,2\}$
should produce the following encoding.
$\{\{9,5\},\{1,1\},\{5,3\},\{1,4\},\{2,2\}\}$
The following are some helpful functions in your code:

- Split: splits list into sublists consisting of runs of identical elements.
- Tally: tallies the elements in list, listing all distinct elements together with their multiplicities.
- First: gives the first element in list.

5 Logic and Set Theory

5.1 Being Logical

In Mathematical logic, statements can have a value of True or False. These are called Boolean expressions. This helps us to "make a decision" and write programs based on the value of a statement. We have seen $==$, which compares the left-hand side with the right-hand side. For example

$\operatorname{In}[]:$	$3^{\sim} 2+4^{\sim} 2==5^{\wedge} 2$
Out [] $:$	True
$\operatorname{In}[]:$	$3-4==1$
Out [] :	False

Other logical relations are

- x != y which is True if and only if x and y have different values
- $x<y$ which is True if and only if x is numerically less than y.
- $\mathrm{x}>\mathrm{y}$ which is True if and only if x is numerically greater than y .
- $\mathrm{x}<=\mathrm{y}$ which is True if and only if x is numerically less or equal to y .
- $\mathrm{x} \quad>=\mathrm{y}$ which is True if and only if x is numerically greater or equal to y .

For example,

In []$:$	$3^{\wedge} 2+4^{\wedge} 2>=5^{\wedge} 2$
Out []$:$	True
In []$:$	Sqrt [49] !=7
Out [] :	False
In [] :	E $>$ Pi
Out [] :	False

Note In logical expressions, ! means the negation (\sim). If we type in Mathematica 3! this means the factorial of 3 which equals 6 . We can express the factorial function of an expr using the Mathematica built-in function Factorial [expr].

```
In[]: 310! != Factorial[310]
Out[]: False
```


5.2 Truth Tables

One can combine logical statements with the usual Boolean operations And (\wedge), $\operatorname{Or}(\vee)$ or the equivalent shortcuts \&\&, ||. In general, for two statements A and B, the statement $A \wedge B$ is false if one of A or B is false and $A \vee B$ is true if one of them is true. In order to produce all possible combinations of true and false cases, we use the command BooleanTable as the following example shows.

In logic, a tautology is a formula that is true in every possible interpretation. TautologyQ[bf] gives True if all combinations of values of variables make the Boolean function bf yield True.

```
    In[]: BooleanTable[(a||b) || (!a && !b)]
Out[]: {True, True, True, True}
    In[]: TautologyQ[(a||b) || (!a && !b)]
Out[]: True
```


5.3 Element " \in "

In Mathematica, for a variable, one can specify certain domains. This means that the variable takes its values from a specific type of data. The domains available are Algebraics, Booleans, Complexes, Integers, Primes, Rationals and Reals. One of the fundamental theorems in number theory is to show that π is not a rational number, i.e., is not of the form m / n, where m and $n \neq 0$ are integers. Look at the following examples:

In []:	Element[Pi, Rationals]
Out[]:	False
In [] :	Element [Sqrt[25], Integers]
Out []:	True
In [] :	IntegerQ[Sqrt[25]]
Out []:	True
In []:	Element[131, Primes]
Out []:	True
In []:	PrimeQ[131]
Out []:	True

5.4 Handling Sets

Now it has been agreed among mathematicians that any mathematics starts by considering sets, i.e., collections of objects. As we mentioned, the difference between Mathematical sets and lists in Mathematica is that lists respect order and repetition, which is to say one can have several copies of one object in a list. Sets are not sensitive about repeated objects, e.g., the set $\{a, b\}$ is the same as the set $\{a, b, b, a\}$. There is no concept of sets in Mathematica and if necessary one considers a list as a set. If one wants to get rid of duplication in a list, one can use

```
In []: DeleteDuplicates[\{a, b, b, a\}]
Out[]: \{a, b\}
```

Considering two sets, the natural operations between them are union and intersection. Mathematica provides Union to collect all elements from different lists into one list (after removing all the duplication) and Intersection for collecting common elements (again discarding repeated elements). The following examples show how these commands work.

```
\(\operatorname{In}[]: U=\{1,2,3,4,5,7\} ;\)
\(\operatorname{In}[]: A=\{1,4,7,3\}\);
\(\operatorname{In}[]: \quad B=\{5,4,3,2\}\)
In []: Union[A, B]
Out[]: \(\{1,2,3,4,5,7\}\)
In []: Intersection[A, B]
Out[]: \{3,4\}
In []: Complement[U, A]
Out[]: \(\{2,5\}\)
```

The command Complement [U,A] will give the elements of the universal set U which are not in the set A.
In mathematics, the power set (or powerset) of any set S, written $\mathcal{P}(S)$, is the set of all subsets of S, including the empty set and S itself. For example, the powerset of the set $\{1,3,2\}$ is

```
In[]: Subsets[{1, 3, 2}]
Out[]: {{},{1},{3},{2},{1,3},{1, 2},{3,2},{1,3,2}}
```

To check up a set is a subset of a powerset, we use the function SubsetQ[A,B], which yields True if B is a subset of A, and False otherwise.
$\operatorname{In}[]: \operatorname{Subset}[\{1,2,3\},\{3,1\}]$
Out[]: True
In mathematics, two sets are said to be disjoint if they have no element in common. For example,

```
In[]: DisjointQ[\{2, 4, 6\}, \(\{1,3,5\}]\)
Out[]: True
```


5.5 Quantifiers

In a statement like $x^{4}+x^{2}>0$, Mathematica treats the variable x as having a definite, though unspecified, value. Sometimes, however, it is useful to be able to make statements about whole collections of possible values for x . You can do this using quantifiers \forall ForAll and \exists Exists. In most cases, the quantifiers can be simplified by the Resolve function. The command Reslove [expr] attempts to resolve expr into a form that eliminates ForAll and Exists quantifiers. For example, the following is true.

In[]: Resolve@Exists[x, $\left.x^{\wedge} 2+x^{\wedge} 4>0\right]$
Out[]: True
But, the following is false since $\mathrm{x}=0$ does not satisfy the statement.

```
In[]: Resolve@ForAll[x, x^2 + x^4 > 0]
Out[]: False
```

Example 5.1. Decide whether the statement is True or False.

1. There exists a natural number n such that $n^{2}>2^{n}$.

In[]: Resolve[Exists[n, $\mathrm{n}^{\wedge} 2$ > 2^n]]
Out []: True
2. For all natural numbers n, if $n \geq 5$, then $n^{2}<2^{n}$.

In[]: Resolve[ForAll[n, $\left.n>=5, n^{\wedge} 2<2 \wedge n\right]$, Integers]
Out[]: True
3. The equation $x^{2}+x=1$ has a negative real number solution.

In []: Resolve[Exists [x, $\mathrm{x}<0, \mathrm{x}^{\wedge} 2+\mathrm{x}==1$], Reals]
Out[]: True
4. For all $x \in \mathbb{R}$ and $x<1, x^{3}-x \leq 0$.

In []: Resolve[ForAll [x, $\mathrm{x}<1, \mathrm{x} \wedge 3-\mathrm{x}<=0$], Reals]
Out[]: False
5. There exists boolean statements p and q such that $(p \vee q) \wedge \sim q$ is true.

In []: Resolve[Exists[\{p,q\}, (p||q) \&\& !q], Booleans]
Out[]: True
6. Every integer is either even or odd.
$\forall n \in \mathbb{Z}, \exists m \in \mathbb{Z}$ such that $n=2 m$ or $n=2 m+1$
In []: Resolve[ForAll[n, Exists[m, $n==2 m| | n==2 m+1]$], Integers]
Out[]: True

5.6 Exercises

1. Construct the truth table for the statement $\mathrm{p} \vee(\mathrm{q} \wedge \mathrm{r})$.
2. Show that the statement $(\mathrm{p} \wedge \mathrm{q}) \vee(\sim \mathrm{p} \vee \sim \mathrm{q})$ is a tautology.
3. A contradiction is a formula that is false in every possible interpretation. Show that the statement $(\mathrm{p} \wedge \sim \mathrm{q}) \Leftrightarrow(\mathrm{p} \Rightarrow \mathrm{q})$ is a contradiction.
Hint: use Mathematica's help to read about the commands Equivalent (\Leftrightarrow) and Implies (\Rightarrow).
4. Let $U=\{1,2,3,4,5,6,7\}, A=\{2,5,7\}$, and $B=\{3,4,6,7\}$.
(a) Determine whether A, and the complement of B are disjoint or not.
(b) Evaluate $A \cup B, B \cap A$, and $\mathcal{P}(A) \cap \mathcal{P}(B)$.
(c) Show that $A \subseteq A \cup B$ and $A \cap B \subseteq A$.
5. Let \mathbf{F} be the set that contains 10 elements. Read more about the command Subsets to answer the following questions:
(a) How many subsets of \mathbf{F} are there contains at most 7 elements? Ans. 968
(b) How many subsets of \mathbf{F} are there contains at exactly 7 elements? Ans. 120
(c) How many subsets of \mathbf{F} are there contains between 3 and 7 elements? Ans. 912
6. Which of the following are true?
(a) $\exists x \in \mathbb{R}$ such that $3^{x}=x^{2}$.
(b) $\exists x \in \mathbb{R}$ such that $3^{x}=x$.
(c) $\forall x \in \mathbb{R}, x^{2}+4 x+5 \geq 0$.
(d) $\forall x \in \mathbb{N}, \exists y \in \mathbb{N}$ such that $x=3 y$ or $x=3 y+1$ or $x=3 y+2$.
(e) $-\frac{1}{2} \leq \frac{(x+y)(1-x y)}{\left(1+x^{2}\right)\left(1+y^{2}\right)} \leq \frac{1}{2}$ for all $x, y \in \mathbb{R}$.

5.7 Project

Create a function TruthTable [expr, vars] that takes a logical expression such as $\mathrm{p} \wedge \mathrm{q}$ and outputs a truth table similar to the following

a	b	$a \wedge b$
T	T	T
T	F	F
F	T	F
F	F	F

You can create a list of truth values using Tuples. For example,
Tuples[\{True, False\}, 2]
\{\{True, True\}, \{True, False\}, \{False, True\}, \{False, False\}\}
You will also find it helpful to consider threading rules over the tuples using MapThread or Thread.

6 Number Theory

6.1 Primes

A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a prime number is called a composite number. For example, 5 is prime because 1 and 5 are its only positive integer factors, whereas 6 is composite because it has the divisors 2 and 3 in addition to 1 and 6 . Either the built-in function PrimeQ or CompositeQ will help you to determine whether an integer is prime or composite.

- PrimeQ[expr] yields True if expr is a prime number, and yields False otherwise.
- CompositeQ[expr] yields False if expr is a prime number, and yields True otherwise.

For example, the number 13 is prime while $10^{100}+1$ is composite since

In [] :	PrimeQ[13]
Out [] :	True
In []:	CompositeQ[13]
Out []:	False
In [] :	PrimeQ[10^100+1]
Out []:	False
In [] $:$	CompositeQ[10^100+1]
Out []:	True

Example 6.1. Prove that for every integer $n>2$, the number $2^{2^{n}-1}+1$ is not a prime number.

$$
\begin{aligned}
\text { In }[]: & \text { Resolve[ForAll }[n, n>2, \text { !PrimeQ[2^(2^n-1)+1]], Integers] } \\
\text { Out []: } & \text { True }
\end{aligned}
$$

The first few primes are $2,3,5,7,11,13, \cdots$. The first prime is 2 , the second is 3 , the sixth is 13 , and so on. In Mathematica, Prime [n] gives the $\mathrm{n}^{\text {th }}$ prime number. For example,

```
In[]: Prime[1]
Out[]: 2
In[]: Prime[6]
Out[]: 13
In[]: Prime[2016]
Out[]: 17519
```

Prime [n] is listable function, that is it can find the primes at many orders or positions. For example,

```
In[]: Prime[{1,6,2016}]
Out[]: {2,13,17519}
```

Example 6.2. Find the first 10 primes.

$$
\begin{aligned}
\text { In [] : } & \text { Prime[Range[10]] } \\
\text { Out []: } & \{2,3,5,7,11,13,17,19,23,29\}
\end{aligned}
$$

To find a prime number above a certain value n, you may use NextPrime [n]. If you would the $k^{\text {th }}$ prime above n you should use NextPrime [n, k]. For example,

```
In[]: NextPrime[4]
Out[]: 5
In[]: NextPrime[4,3]
Out[]: 11
```

If k is negative in NextPrime $[\mathrm{n}, \mathrm{k}]$, then the result is the k^{th} prime previous to n .

$$
\begin{array}{cl}
\text { In [] }: & \text { NextPrime }[88,-5] \\
\text { Out []: }: & 67
\end{array}
$$

The number of primes less than or equal to x is evaluated using PrimePi [x]. For example, there are 25 primes less that or equal to 100 since

```
In[]: PrimePi[100]
Out[]: 25
```

Example 6.3. How many 3-digit prime numbers are there?
In []: PrimePi[999] - PrimePi[100]
Out[]: 143

6.2 Integer Factorization

In number theory, the prime factors of a positive integer are the prime numbers that divide that integer exactly. The prime factorization of a positive integer is a list of the integer's prime factors, together with their multiplicities; the process of determining these factors is called integer factorization. The fundamental theorem of arithmetic says that every positive integer has a single unique prime factorization. To shorten prime factorizations, factors are often expressed in powers (multiplicities). For example, $360=2^{3} \times 3^{2} \times 5$. In Mathematica, we use

$$
\begin{aligned}
\text { In [] : } & \text { FactorInteger [360] } \\
\text { Out []: } & \{\{2,3\},\{3,2\},\{5,1\}\}
\end{aligned}
$$

The list of all integers that divides a number n can be evaluated using Divisors [n]. For example,

In [] :	Divisors[10]
Out [] :	$\{1,2,5,10\}$
In[]:	Divisors[13]
Out []:	$\{1,13\}$

Example 6.4. How many divisors are there for 13 !.
In[]: Length@Divisors[13!]
Out []: 1584
Example 6.5. How many integers are there divide both 1545 and 1230.
In[]: Intersection[Divisors[1545], Divisors[1230]] // Length
Out[]: 4
Sometimes, you need to know the highest power k of b such that b^{k} divides n. To do this, use the Mathematica function IntegerExponent [n,b]. For example, the highest power of 2 that divides 360 is 3.

In []: IntegerExponent [360, 2]
Out[]: 3
Example 6.6. With how many zeros will 130! end ?
In []: IntegerExponent[130!,10]
Out[]: 32
The command IntegerLength [n] in Mathematica gives the number of digits in the base 10 representation of the integer n. Also, DigitCount $[n, b]$ gives a list of the numbers of $1,2, \ldots, b-1,0$ digits in the base-b representation of n.
Example 6.7. How many digits are there for 130!?
In []: IntegerLength[130!]
Out[]: 220
and they are distributed as follows:

14	1's,	21	2's,	14	3's,	23	4 's,	24	$5 ' s$,
16	6's,	20	7's,	15	8's,	22	9's,	51	$0 ' s$,

since
In []: DigitCount[130!]
Out[]: $\quad\{14,21,14,23,24,16,20,15,22,51\}$
Example 6.8. Find only the number of 0 's, 5 's and 9 's do appear in 16837^{1921}.
In []: DigitCount[16837^1921, 10, \#] \& /@ \{0, 5, 9\}
Out []: $\{822,790,821\}$

6.3 Digits in Numbers

In this section we learn how to convert between numbers and lists. To obtain a list of the decimal digits in the integer n, you may use IntegerDigits [n]. To construct an integer from the list of its decimal digits use FromDigits [list].
Example 6.9. Reverse the integer 365435296161.

In[]:	FromDigits[Reverse[IntegerDigits[365435296161]]]
Out []:	161692534563
In[]:	IntegerReverse[365435296161]
Out []:	161692534563

Example 6.10. Find the sum of the digits of 1980 !.
In[]: Total@IntegerDigits[1980!]
Out[]: 23418

6.4 Fibonacci Sequence

As we have seen in Chapter 3, the sequence $1,1,2,3,5,8,13,21, \cdots$ is called Fibonacci sequence. By definition, the first two numbers in the Fibonacci sequence are 1 and 1 , and each subsequent number is the sum of the previous two. The Mathematica function Fibonacci [n] gives the $\mathrm{n}^{\text {th }}$ Fibonacci number.

In[]:	Fibonacci[7]
Out []:	13

Fibonacci $[\mathrm{n}]$ is listable function, so you can find, for example, the first 14 Fibonacci numbers as follows.
In []: Fibonacci[Range[14]]
Out []: $\quad\{1,1,2,3,5,8,13,21,34,55,89,144,233,377\}$
Example 6.11. Find the sum of the first 100 Fibonacci numbers.

```
In[]: Total@Fibonacci[Range[100]]
Out[]: 927372692193078999175
```

Example 6.12. Determine whether the $13^{\text {th }}$ Fibonacci number is prime.

```
In[]: PrimeQ[Fibonacci[13]]
Out[]: True
```


6.5 Number Theoretic Functions

In mathematics, the remainder is the amount "left over" after performing some computation. In arithmetic, the remainder is the integer "left over" after dividing one integer by another to produce an integer quotient (integer division). In computing, the modulo operation finds the remainder after division of one number by another (sometimes called modulus).

Given two positive numbers, a (the dividend) and n (the divisor), a modulo n (abbreviated as a mod n) is the remainder of the Euclidean division of a by n . For instance, the expression " $5 \bmod 2$ " would evaluate to 1 because 5 divided by 2 leaves a quotient of 2 and a remainder of 1 , while " $9 \bmod 3$ " would evaluate to 0 because the division of 9 by 3 has a quotient of 3 and leaves a remainder of 0 ; there is nothing to subtract from 9 after multiplying 3 times 3 .

Quotient and Remainder In Mathematica, if we divide a by n, then the quotient is evaluated using Quotient $[\mathrm{a}, \mathrm{n}]$ and the remainder (modulus) is $\operatorname{Mod}[\mathrm{a}, \mathrm{n}]$. For example,

```
In[]: Quotient[5, 2]
Out[]: 2
    In[]: Mod[5, 2]
Out[]: 1
    In[]: QuotientRemainder[5, 2]
Out[]: {2,1}
    In[]: QuotientRemainder[9, 3]
Out[]: {3,0}
```

If the remainder is 0 when we divide a by n , then we say that a is divisible by n . To test whether m is divisible by n you may use Divisible [m, n] which yields True if m is divisible by n , and yields False if it is not. For example,

```
In[]: Divisible[5, 2]
Out[]: False
    In[]: Divisible[130!, 1210]
Out[]: True
    In[]: Mod[130!, 1210]
Out[]: 0
```

GCD and LCM In mathematics, the greatest common divisor (gcd) of two or more integers, when at least one of them is not zero, is the largest positive integer that divides the numbers without a remainder. For example, the GCD of 8 and 12 is 4 .

```
In[]: GCD[8, 12]
Out[]: 4
```

The least common multiple of two or more integers is the smallest positive integer that is divisible by all of them. Since division of integers by zero is undefined, this definition has meaning only if the integers are different from zero. For example, the LCM of 8 and 12 is 24 .

```
In[]: LCM[8, 12]
Out[]: 24
```

Example 6.13. Find the GCD and LCM for the numbers 2145, 1716, 9918.

```
In[]: GCD[2145, 1716, 9918]
Out[]: 3
In[]: LCM[2145, 1716, 9918]
Out[]: 14182740
```

In number theory, two integers a and b are said to be relatively prime, mutually prime, or coprime if the only positive integer that evenly divides both of them is 1 . That is, the only common positive factor of the two numbers is 1 . This is equivalent to their greatest common divisor being 1 . For example, 8, 9, and 11 are relatively prime since

```
In[]: CoprimeQ[8, 9, 11]
Out[]: True
```

The function CoprimeQ[n1, n2, ...] yields True if all pairs of the ni are relatively prime, and yields False otherwise. For example, 6, 9, and 11 are not relatively prime since 3 divides 6 and 9 .

In[]: CoprimeQ[6, 9, 11]
Out[]: False

6.6 Selecting from Lists

So far we have been able to create a list of data by using functions producing lists. The next step is to be able to choose, from a list, certain data which fit a specific description. This can be achieved using the command Select. The structure of Select is as follows.

```
Select[list, crit]
picks out all elements ei of list for which crit[ei] is True.
Select[list, crit, n]
picks out the first n elements for which crit[ei] is True.
```

Example 6.14. From the first 25 Fibonacci numbers, find the even numbers? find the prime numbers?

```
In []: Select[Fibonacci [Range[25]], EvenQ]
Out []: \(\quad\{2,8,34,144,610,2584,10946,46368\}\)
In []: Select[Fibonacci[Range[25]], PrimeQ[\#] \&]
Out []: \(\quad\{2,3,5,13,89,233,1597,28657\}\)
```

Example 6.15. How many 3-digits integer has at least 30 divisors?

```
In[]: Length@Select[Range[100, 999], Length[Divisors[#]] >= 30 &]
Out[]: 2
```

Example 6.16. An integer p is called prime-palindromic if it is prime and the number when we reverse the digits of p is also prime (for example 941). How many prime-palindromic numbers are there up to 1000 .

```
In[]: list = Prime[Range[PrimePi[1000]]];
In[]: crit[x_] := PrimeQ[IntegerReverse[x]];
In[]: Select[list, crit] // Length
Out[]: 56
```

Example 6.17. Notice that $12^{2}=144$ and $21^{2}=441$, i.e., the numbers and their squares are reverses of each other. Find all the numbers up to 100 with this property.

$$
\begin{aligned}
\text { In [] : } & \text { Select[Range[100], IntegerReverse[\#] ^2==IntegerReverse[\#^2] \&] } \\
\text { Out [] : } & \{1,2,3,10,11,12,13,20,21,22,30,31,100\}
\end{aligned}
$$

Example 6.18. Twin primes are pairs of primes of the form (p, q) such that $q=p+2$. For example, $(3,5)$ and $(41,43)$ are twin primes. How many twin primes are there up to 429 ?

$$
\begin{aligned}
\text { In [] }: & \text { Select[Prime[Range[PrimePi[429]]], PrimeQ[\#+2]\&] //Length } \\
\text { Out []: } & 22
\end{aligned}
$$

Example 6.19. A number is called a Harshad number if it is divisible by the sum of its digits (e.g., 12 is Harshad as it is divisible by $1+2=3$). Find all 2-digit Harshad numbers.

In []: Select[Range[10,99], Divisible[\#,Total@IntegerDigits[\#]]\&]
In []: Select[Range[10,99], Mod[\#,Total@IntegerDigits[\#]]==0\&]
Out [] : $\quad\{10,12,18,20,21,24,27,30,36,40,42,45,48,50,54$, $60,63,70,72,80,81,84,90\}$

6.7 Exercises

1. Find the $12^{\text {th }}$ prime number?

Ans. 37
2. Determine whether $2^{5}-1$ is prime or composite? What is the prime number next to $2^{5}-1$? What is the 5 th prime number next to $2^{5}-1$? What is the 5 th prime number previous to $2^{5}-1$?
Ans. Prime, 37, 53, 13
3. How many primes are there less than 1000 ? How many 6 -digit primes are there? Ans. 168, 68906
4. Factor the integer 12345. Write all its divisors. How many are there? Ans. $3 \times 5 \times 823,\{1,3,5,15,823,2469,4115,12345\}$, 8
5. Find the least common multiple and the greatest common divisor of the integers $16,24,524$.

Ans. 4, 6288
6. Find the quotient and reminder when 13! is divided by 2256 .

Ans. 2760204,576
7. How many positive integers are there divides both 12 ! and the $36^{\text {th }}$ Fibonacci number, but not $2^{100}-1$.
Ans. 18
8. Find the sum of the first 100 primes. Find the sum of the first 123 even integers. Ans. 24133, 15252
9. Show that among the first 500 Fibonacci numbers, 18 of them are prime. Which of the first 10 Fibonacci number is not prime?
10. We call repunits the numbers that contain only the digit 1 in their writing, namely numbers of the form $111 \cdots 11$.
(a) We know that 11 is a prime repunit number. One wonders what is the next prime repunit. Find all such numbers up to 500 digits of ones.
(b) Find the smallest repunit divisible by 19.

Ans. 111111111111111111
11. The sum of two positive integers is 5432 and their least common multiple is 223020 . Find the numbers.
Ans. 1652, 3780
12. Find the smallest positive multiple of 99999 that contains no 9 's amongst its digits.

Ans. 11112
13. A Dudeney number is a positive integer that is a perfect cube such that the sum of its decimal digits is equal to the cube root of the number. For example,

$$
4913=17^{3} \text { where } 17=4+9+1+3
$$

Find all 5 digits Dudeney numbers.
Ans. 17576, 19683
14. (a) A palindromic number is a number that remains the same when its digits are reversed. The command PalindromeQ[n] returns True if the integer n is identical to IntegerReverse [n], and False otherwise. From the first 100 primes, how many of them is palindromic?
(b) Show that: All 4-digits palindromic numbers are composite. Hint: You may use the command AllTrue.
(c) Show that: All 4-digits palindromic numbers are divisible by 11 .
15. A number is perfect if it is equal to the sum of its proper divisors. For example, $6=1+2+3$ is perfect, while $18 \neq 1+2+3+6+9$ is not. You may use the command PerfectNumberQ to test whether a number is perfect or not. For example, PerfectNumberQ[6] returns True, while PerfectNumberQ[18] returns False.
(a) Write a program to find all the perfect numbers up to 10000 .
(b) Use the command PerfectNumber to find the first 7 perfect numbers.
16. A partition of a positive integer n, also called an integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. For example, 4 can be partitioned in five distinct ways:

$$
\begin{aligned}
4 & =4 \\
& =3+1 \\
& =2+2 \\
& =2+1+1 \\
& =1+1+1+1
\end{aligned}
$$

Use the command IntegerPartitions to answer the following questions.
(a) Give a list of all possible ways to partition the integer 5 into smaller integers ?
(b) Partitions 5 into at most 3 integers ?
(c) Partitions 5 into exactly 3 integers ?
(d) Find all partitions of 5 that involve only 1 and 3 ?
(e) How many ways are there to make change for 156 JOD with the paper coins $1,5,10,20$, and 50 with exactly 10 paper coins?
17. In mathematics, a Mersenne prime is a prime number of the form $M_{n}=2^{n}-1$ for some integer n. In order for M_{n} to be prime, n must itself be prime. This is true since for composite n with factors a and $\mathrm{b}, \mathrm{n}=\mathrm{ab}$. Therefore, $2^{\mathrm{n}}-1$ can be written as $2^{\mathrm{ab}}-1$, which always has the factors $\left(2^{\mathrm{a}}-1\right)$ and $\left(2^{\mathrm{b}}-1\right)$. The first five Mersenne primes are $\mathrm{M}_{\mathrm{n}}=3,7,31,127,8191$ corresponding to $\mathrm{n}=2,3,5,7,13$.
(a) In Mathematica, the command MersennePrimeExponentQ[n] returns True if n is a Mersenne prime exponent, and False otherwise. Using this command, find all Mersenne prime exponents smaller than 10000.
(b) The command MersennePrimeExponent [n] gives the $\mathrm{n}^{\text {th }}$ Mersenne prime exponent. What is the $40^{\text {th }}$ Mersenne prime exponent? How many digits are there in the $40^{\text {th }}$ Mersenne prime number?
Ans. 20996011, 8
18. Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states:
Every even integer greater than $\mathbf{2}$ can be expressed as the sum of two primes.
The expression of a given even number as a sum of two primes is called a Goldbach partition of that number. The following are examples of Goldbach partitions for some even numbers:

$$
\begin{aligned}
6 & =3+3 \\
8 & =3+5 \\
10 & =3+7=5+5
\end{aligned}
$$

Write a code using Mathematica to find all possible Goldbach partitions given any even integer $\mathrm{n}>2$, then use it to find all Goldbach partitions for $n=430$.
Hint: Is is useful to use the command IntegerPartitions.
19. How does the Apply command function in Mathematica, and how can it be utilized, alongside other commands, to express the prime factorization of a number such as 12 , as $2^{2} \cdot 3^{1}$?

6.8 Project

1. In mathematics, the look-and-say sequence is the sequence of integers beginning as follows:

$$
1,11,21,1211,111221,312211,13112221,1113213211, \cdots
$$

To generate a member of the sequence from the previous member, read off the digits of the previous member, counting the number of digits in groups of the same digit. For example:

1	is read off as	"one 1 " or 11.
11	is read off as	"two 1 s " or 21.
21	is read off as	"one 2 , one 1 " or 1211.
1211	is read off as	"one 1 , one 2 , two 1 s" or 111221.
111221	is read off as	"three 1 s , two 2 s , one 1 " or 312211.

The look-and-say sequence was analyzed by John Conway after he was introduced to it by one of his students at a party. Write a Mathematica code to generate the look-and-say sequence given a starting digit d from 0 to 9 with a length n. Project 4.14 in Chapter 4 is helpful for your code.

2. A PRIME PENCIL: TRUNCATABLE PRIMES

In number theory, a left-truncatable prime is a prime number which contains no 0 , and if the leading ("left") digit is successively removed, then all resulting numbers are prime. For example, 9137, since 9137, 137, 37 and 7 are all prime. Write a Mathematica code to find the largest left-truncatable prime.

The idea of recursion in Section 3.7 from Chapter 3 is helpful in your code. In addition, you may need the following built-in command: Prepend.

7 Computer Algebra and Solving Equations

The Wolfram Language has a variety of commands for algebraic manipulation operations like expansion and factoring of polynomials, addition of fractions with unlike denominators, and collection of terms with like variables. These commands have names that describe exactly what they do, making it intuitive for new users to find the right commands for their needs.

7.1 Working with Polynomials and Powers

One of the abilities of Mathematica is to handle symbolic computations, i.e., Mathematica can comfortably work with symbols. For example, the Expand command does exactly what its name says it does:

$$
\begin{aligned}
\operatorname{In}[]: & \text { Expand }\left[(x-2)(x-3)(x+1)^{\wedge} 2\right] \\
\text { Out }[]: & x^{4}-3 x^{3}-3 x^{2}+7 x+6
\end{aligned}
$$

Mathematica can also do the inverse of this task, namely factorize an expression:

$$
\begin{aligned}
\operatorname{In}[]: & \text { Factor }\left[x^{\wedge} 2+2 \mathrm{x}+1\right] \\
\operatorname{Out}[]: & (1+\mathrm{x})^{2}
\end{aligned}
$$

While expansion of an algebraic expression is a simple and routine procedure, the factorization of algebraic expressions is often quite challenging. My favorite example is this one.

$$
\begin{aligned}
\operatorname{In}[]: & \text { Factor }\left[x^{\wedge} 10+x^{\wedge} 5+1\right] \\
\operatorname{Out}[]: & \left(1+x+x^{2}\right)\left(1-x+x^{3}-x^{4}+x^{5}-x^{7}+x^{8}\right)
\end{aligned}
$$

Factor only works completely if all the roots are rational.

$$
\begin{aligned}
\operatorname{In}[]: & \text { Factor }\left[x^{\wedge} 2-2\right] \\
\text { Out }[]: & -2+x^{2}
\end{aligned}
$$

Factor will not use complex numbers in its answer $x^{2}+1$ unless one of the coefficients is complex, so it won't write $\mathrm{x}^{2}+1=(\mathrm{x}-\mathrm{i})(\mathrm{x}+\mathrm{i})$.

$$
\begin{aligned}
\operatorname{In}[]: & \text { Factor }\left[x^{\wedge} 2+1\right] \\
\text { Out }[]: & 1+x^{2}
\end{aligned}
$$

Setting Factor [poly, Extension->All] will extend the domain of coefficients to include any irrational or complex numbers.

$$
\begin{aligned}
\operatorname{In}[]: & \text { Factor }\left[x^{\wedge} 2+2, \text { Extension } \rightarrow \text { All }\right] \\
\text { Out }[]: & (x-i \sqrt{2})(x+i \sqrt{2}) \\
\operatorname{In}[]: & \text { Factor }\left[2+2 \operatorname{Sqrt}[2] x+x^{\wedge} 2, \text { Extension } \rightarrow \text { All }\right] \\
\text { Out }[]: & (x+\sqrt{2})^{2}
\end{aligned}
$$

Expand and Factor do a nice job even when you use numerical coefficients.

$$
\begin{aligned}
\operatorname{In}[]: & \text { Expand[(x-1.25) }(2 \mathrm{x}-0.5)] \\
\text { Out [] : } & 0.625-3 . \mathrm{x}+2 \mathrm{x}^{2} \\
\text { In [] : } & \text { Factor }\left[0.625-3 \mathrm{x}+2 \mathrm{x}^{\wedge} 2\right] \\
\text { Out []: } & 2 .(-1.25+\mathrm{x})(-0.25+\mathrm{x})
\end{aligned}
$$

The Expand and Factor commands also work for polynomials with more than one variable.

```
In []: Expand[(2 \(\left.\mathrm{x}-5 \mathrm{y}+3 \mathrm{z})^{\wedge} 2\right]\)
Out []: \(\quad 4 x^{2}-20 x y+25 y^{2}+12 x z-30 y z+9 z^{2}\)
In []: Factor[4 \(\left.\mathrm{x}^{\wedge} 2-20 \mathrm{x} y+25 \mathrm{y}^{\wedge} 2+12 \mathrm{x} z-30 \mathrm{y} z+9 \mathrm{z}^{\wedge} 2\right]\)
Out []: \(\quad(2 x-5 y+3 z)^{2}\)
```

The Simplify command produces an expression that is the shortest to write out. More often than not, this will agree with what you think of as "simplest". For example, $\mathrm{x}^{2}-2 \mathrm{x}+1=(\mathrm{x}-1)^{2}$ is factored when you Simplify it:

$$
\begin{aligned}
\operatorname{In}[]: & \text { Simplify[x^2-2x+1] } \\
\text { Out[]: } & (-1+x)^{2}
\end{aligned}
$$

However, if we ask Mathematica to simplify $\mathrm{x}^{3}+2 \mathrm{x}^{2}-2 \mathrm{x}-1$,

$$
\begin{aligned}
\operatorname{In}[]: & \text { Simplify }\left[x^{\wedge} 3+2 x^{\wedge} 2-2 x-1\right] \\
\operatorname{Out}[]: & -1-2 x+2 x^{2}+x^{3}
\end{aligned}
$$

Mathematica returns the expression, even though $x^{3}+2 x^{2}-2 x-1$ can be factored as $(x-1)\left(x^{2}+3 x+1\right)$. Mathematica thinks that writing this cubic polynomial directly with 4 terms is simpler than factoring it into two expressions with a total of 5 terms. The Expand and Simplify commands can't help much when expressions have fractional powers (i.e. roots). For example, you might think that $\sqrt{x^{2}}=\left(x^{2}\right)^{1 / 2}=x$, but Mathematica doesn't agree:

```
In []: Simplify[Sqrt[x^2]]
Out[]: \(\sqrt{\mathrm{x}^{2}}\)
```

The reason for the apparent failure should be clear: $\sqrt{\mathrm{x}^{2}}=\mathrm{x}$ only if $\mathrm{x} \geq 0$. Sometimes the reason that Mathematica does not simplify expressions is that it treats x as a complex number. The Simplify command supports an Assumptions option with which we can force Mathematica to treat x , say, as a nonnegative real number, or simply a real number. Here's what happens with the example above when including appropriate assumptions:

```
In[]: Simplify[Sqrt[x^2], Assumptions -> x >= 0]
Out[]: x
In[]: Simplify[Sqrt[x^2], Assumptions -> Element[x, Reals]]
Out[]: Abs[x]
    In[]: Simplify[(x^6)^(1/3), Assumptions -> Element[x, Reals]]
Out[]: x}\mp@subsup{}{}{2
```


7.2 Working with Rational Functions

A rational function is an expression of the form $\frac{P(x)}{Q(x)}$, where P and Q are polynomials of a single variable x . The following are three common algebraic operations involving rational functions. Combining terms over a common denominator can be achieved with the Together command. For example, to combine

$$
\begin{aligned}
& \frac{2}{3 x+1}+\frac{5 x}{x+2}: \\
& \operatorname{In}[]: \quad \text { Together }[2 /(3 x+1)+5 x /(x+2)] \\
& \operatorname{Out}[]: \quad \frac{4+7 x+15 x^{2}}{(2+x)(1+3 x)}
\end{aligned}
$$

Splitting up a rational function into its partial fraction decomposition can be done with the Apart command. For example, to decompose $\frac{11 x^{2}-17 x}{(x-1)^{2}(2 x+1)}$

```
\(\operatorname{In}[]: \operatorname{Apart}\left[\left(11 \mathrm{x}^{\wedge} 2-17 \mathrm{x}\right) /\left((\mathrm{x}-1)^{\wedge} 2(2 \mathrm{x}+1)\right)\right]\)
```

Out []: $\quad-\frac{2}{(-1+x)^{2}}+\frac{3}{-1+x}+\frac{5}{1+2 x}$
The Apart command also does long division. The quotient $\frac{x^{5}-2 x^{2}+6 x+1}{x^{2}+x+1}$ is found with:

$$
\begin{aligned}
\operatorname{In}[]: & \text { Apart }\left[\left(x^{\wedge} 5-2 x^{\wedge} 2+6 x+1\right) /\left(x^{\wedge} 2+x+1\right)\right] \\
\text { Out }[]: & -1-x^{2}+x^{3}+\frac{2+7 x}{1+x+x^{2}}
\end{aligned}
$$

7.3 Working with Transcendental Functions

The Simplify command has reasonable success working many basic identities involving the trigonometric and hyperbolic functions, such as

$$
\begin{aligned}
\operatorname{In}[]: & \text { Simplify }\left[\operatorname{Sin}[\mathrm{x}]^{\wedge} 2+\operatorname{Cos}[\mathrm{x}]^{\wedge} 2\right] \\
\text { Out }[]: & 1 \\
\operatorname{In}[]: & \operatorname{Simplify}[\operatorname{Sin}[\mathrm{x} / 2] \operatorname{Cos}[\mathrm{x} / 2]] \\
\text { Out }[]: & \frac{\operatorname{Sin}[\mathrm{x}]}{2} \\
\operatorname{In}[]: & \operatorname{Simplify}\left[\operatorname{Cosh}[\mathrm{x}]^{\wedge} 2-\operatorname{Sinh}[\mathrm{x}]^{\sim} 2\right] \\
\text { Out }[]: & 1
\end{aligned}
$$

The TrigExpand and TrigReduce commands provide alternate methods of working with trigonometric functions, performing the jobs suggested by their names as follows.

TrigExpand[expr]	Splits up sums and integer multiples that ap- pear in arguments of trigonometric functions, and then expands out products of trigonomet- ric functions into sums of powers, using trigono- metric identities when possible.

For example:

$$
\begin{aligned}
\operatorname{In}[]: & \text { TrigExpand[Sin[2 } \mathrm{x}]] \\
\text { Out }[]: & 2 \operatorname{Cos}[\mathrm{x}] \operatorname{Sin}[\mathrm{x}] \\
\operatorname{In}[]: & \operatorname{TrigExpand}[\operatorname{Cos}[\mathrm{x}+\mathrm{y}]] \\
\text { Out }[]: & \operatorname{Cos}[\mathrm{x}] \operatorname{Cos}[\mathrm{y}]-\operatorname{Sin}[\mathrm{x}] \operatorname{Sin}[\mathrm{y}] \\
\operatorname{In}[]: & \operatorname{TrigExpand}[\operatorname{Sin}[2 \mathrm{x}] \operatorname{Cos}[3 \mathrm{x}]] \\
\text { Out }[]: & -\frac{\operatorname{Sin}[\mathrm{x}]}{2}+\frac{5}{2} \operatorname{Cos}[\mathrm{x}]^{4} \operatorname{Sin}[\mathrm{x}]-5 \operatorname{Cos}[\mathrm{x}]^{2} \operatorname{Sin}[\mathrm{x}]^{3}+\frac{\operatorname{Sin}[\mathrm{x}]^{5}}{2}
\end{aligned}
$$

TrigReduce[expr]	Given a trigonometric polynomial, TrigReduce typically yields a linear expression involving trigonometric functions with more complicated arguments.

For example:

```
In []: TrigReduce[2 \(\operatorname{Cos}[\mathrm{x}]\) ~2]
Out[]: \(1+\operatorname{Cos[2x]}\)
    In []: TrigReduce[2 \(\operatorname{Sin}[x] \operatorname{Cos}[y]]\)
Out [ ]: \(\quad \operatorname{Sin}[\mathrm{x}-\mathrm{y}]+\operatorname{Sin}[\mathrm{x}+\mathrm{y}]\)
    In []: TrigReduce[Sin[2 x] Cos[3 x]]
Out []: \(\frac{1}{2}(-\operatorname{Sin}[x]+\operatorname{Sin}[5 x])\)
```

The FullSimplify Command You may (and we usually do) prefer to use FullSimplify when working with transcendental functions. Think of this command as a "full-strength" version of Simplify. It uses a wider variety of expression simplification possibilities than Simplify (although it could take a long time with complicated expressions).
Example 7.1. Find the exact value of $\sqrt{2}+\sqrt{3}-\sqrt{2 \sqrt{6}+5}$.

$$
\begin{aligned}
\operatorname{In}[]: & \text { FullSimplify[Sqrt[2] + Sqrt[3] - Sqrt [5+2Sqrt [6]]] } \\
\text { Out []: } & 0
\end{aligned}
$$

7.4 Equations and Their Solutions

Many commands are available for equation solving, from solving over specific domains to returning general solutions to finding roots of equations. For new users, becoming familiar with just a few of the most common commands is sufficient to solve many different types of problems.

Solving equations and finding roots for different types of equations and relations are one of the main endeavors of mathematics. For polynomials with one variable of the form $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, it has been proved that there is no formula for finding the roots when $n \geq 5$ (in fact, when $n=3$ or $n=4$, the formulas are not that pretty!). This forces us to find numerical ways to estimate the roots of the equations.

Using Wolfram Mathematica we have several commands at our disposal. There are different kinds of equations and they require different commands to find the roots.

The Solve Command for an Equation Mathematica's Solve command will solve an equation for an unknown variable. You use it in the form:

```
Solve[ an equation, variable(s) to solve for ]
```

For example,

$$
\begin{aligned}
\text { In }[]: & \text { Solve }[2 x+5==9, x] \\
\text { Out }[]: & \{\{x \rightarrow 2\}\}
\end{aligned}
$$

Notice that:

- Equations in Mathematica are written using the double-equal sign "==".
- The output of Solve will always have an outer layer of curly braces $\}$.
- Inside the outer layer of curly braces, you'll see substitution rules with the familiar " \rightarrow " syntax.

You can check that $\mathrm{x}=2$ is the correct solution to the above equation:
In []: $2 \mathrm{x}+5==9 / . \quad\{\mathrm{x}->2\}$
Out[]: True

This means that after the substitution $x=2$, it is True that the left-hand side of the equation equals the right-hand side.

It may be useful to start by counting the number of roots before calculating these roots, if any. The command CountRoots[poly, x] gives the number of real roots of the polynomial poly in x.

```
In[]: CountRoots[6 x^3 + 36 x^2 - 78 x - 252, x]
Out[]: 3
```

To count complex roots of a polynomial you have to specify a rectangular interval for the polynomial. For example,

```
In[]: CountRoots[x^2 + 5, {x, -3 I, 3 I}]
Out[]: 2
```

Here are a few more examples involving the Solve command.
Example 7.2. Equations can have more than one solution. We can see numerical approximations of the solutions using the N command.

$$
\begin{aligned}
\operatorname{In}[]: & \text { Solve }\left[x^{\wedge} 2-3 x+1==0, x\right] \\
\text { Out [] : } & \left.\left\{\left\{x \rightarrow \frac{1}{2}(3-\sqrt{5})\right\},\left\{x \rightarrow \frac{1}{2}(3+\sqrt{5})\right)\right\}\right\} \\
\text { In [] : } & \text { N@Solve[x^2-3x+1==0,x]} \\
\text { Out [] : } & \{\{x \rightarrow 0.381966\},\{x \rightarrow 2.61803\}\}
\end{aligned}
$$

Example 7.3. Here, two of the solutions are complex, with i standing for the familiar $\sqrt{-1}$.

$$
\operatorname{In}[]: \quad \text { Solve }\left[x^{\wedge} 3+x^{\wedge} 2=-3 x, x\right]
$$

$$
\text { Out []: }\left\{\{x \rightarrow 0\},\left\{x \rightarrow \frac{1}{2}(-1-i \sqrt{11})\right\},\left\{x \rightarrow \frac{1}{2}(-1+i \sqrt{11})\right\}\right\}
$$

Example 7.4. If the equation involves other variables, Mathematica will treat them as constants (or parameters, depending on your use).

$$
\begin{aligned}
\operatorname{In}[]: & \text { Solve }\left[y^{\wedge} 2-a * y=2 a, y\right] \\
\operatorname{Out}[]: & \left\{\left\{y \rightarrow \frac{1}{2}(a-\sqrt{a} \sqrt{8+a})\right\},\left\{y \rightarrow \frac{1}{2}(a+\sqrt{a} \sqrt{8+a})\right\}\right\}
\end{aligned}
$$

Note The Solve command works very well for equations involving polynomials. However, it doesn't have much success with trigonometric, exponential, logarithmic, or hyperbolic functions.

The Solve Command for a System of Equations Solve can also be used to solve a system of equations. In general, it is used in this form:

$$
\text { Solve }[\{\text { eqn } 1, \text { eqn } 2, \ldots\},\{\operatorname{var} 1, \operatorname{var} 2, \ldots\}]
$$

Example 7.5. Solve the system $\left\{\begin{array}{l}3 x+8 y=5 \\ 5 x+2 y=7\end{array}\right.$

$$
\begin{aligned}
\operatorname{In}[]: & \operatorname{Solve}[\{3 \mathrm{x}+8 \mathrm{y}==5,5 \mathrm{x}+2 \mathrm{y}==7\},\{\mathrm{x}, \mathrm{y}\}] \\
\operatorname{Out}[]: & \left\{\left\{\mathrm{x} \rightarrow \frac{23}{17}, \mathrm{y} \rightarrow \frac{2}{17}\right\}\right\}
\end{aligned}
$$

Example 7.6. Solve the system $\left\{\begin{aligned} 2 x y+y^{2} & =-4 \\ x+y & =2\end{aligned}\right.$.
In []: Solve[\{2 $\left.\left.\mathrm{x} y+\mathrm{y}^{\wedge} 2==-4, \mathrm{x}+\mathrm{y}==2\right\},\{\mathrm{x}, \mathrm{y}\}\right]$
Out []: $\quad\{\{\mathrm{x} \rightarrow 2 \sqrt{2}, \mathrm{y} \rightarrow 2(1-\sqrt{2})\},\{\mathrm{x} \rightarrow-2 \sqrt{2}, \mathrm{y} \rightarrow 2(1+\sqrt{2})\}\}$
Two sets of solutions are obtained.
Example 7.7. Solve the system $\left\{\begin{array}{l}x+y=0 \\ x+y=1\end{array}\right.$

$$
\operatorname{In}[]: \quad \operatorname{Solve}[\{\mathrm{x}+\mathrm{y}==0, \mathrm{x}+\mathrm{y}==1\},\{\mathrm{x}, \mathrm{y}\}]
$$

Out[]: \{\}
There are no solutions to this system of equations.

Example 7.8. Solve the system $\left\{\begin{aligned} 2 x-y+z & =2 \\ x+y+z & =3\end{aligned}\right.$
In []: Solve[\{2 x - y + z == 2, $x+y+z==3\},\{x, y, z\}]$
Out []: $\left\{\left\{y \rightarrow \frac{1}{2}+\frac{x}{2}, z \rightarrow \frac{5}{2}-\frac{3 x}{2}\right\}\right\}$
The above command produced the warning message Solve::svars: Equations may not give solutions for all solve variables. >> It alerts you to the fact that you supplied only two equations, so one of the three variables (here, it's x) will be treated as a constant (or parameter) in the solution.

Equations and Numerical Solutions There are some equations, however, for which it is mathematically impossible to find explicit formulas for the solutions. The Wolfram Language uses Root objects to represent the solutions in this case.

$$
\begin{aligned}
& \text { In []: Solve[2-4 } \left.\mathrm{x}+\mathrm{x}^{\wedge} 5=0 \text {, } \mathrm{x}\right] \\
& \text { Out []: } \\
& \begin{array}{l}
\{\{x \rightarrow \ominus-1.52 \ldots\},\{x \rightarrow \circledast 0.508 \ldots\},\{x \rightarrow(1.24 \ldots\}, \\
\{x \rightarrow(\ominus-0.117 \ldots-1.44 \ldots \text { ii }\},\{x \rightarrow(\ominus-0.117 \ldots+1.44 \ldots \text { i }\}\}
\end{array}
\end{aligned}
$$

Even though you cannot get explicit formulas, you can still evaluate the solutions numerically.

$$
\begin{aligned}
\text { In [] : } & \text { Solve }\left[2-4 \mathrm{x}+\mathrm{x}^{\wedge} 5=0, \mathrm{x}\right] / / \mathrm{N} \\
\text { Out }[]: & \{\{\mathrm{x} \rightarrow-1.51851\},\{\mathrm{x} \rightarrow 0.508499\},\{\mathrm{x} \rightarrow 1.2436\} \\
& \{\mathrm{x} \rightarrow-0.116792-1.43845 I\},\{\mathrm{x} \rightarrow-0.116792+1.43845 \mathrm{I}\}\}
\end{aligned}
$$

Or, you can use NSolve. The NSolve command uses efficient numerical techniques to approximate roots of polynomials and a few other simple functions. It has the same syntax as Solve.

$$
\begin{aligned}
\text { In [] : } & \text { NSolve } \left.2-4 \mathrm{x}+\mathrm{x}^{\wedge} 5=0, \mathrm{x}\right] \\
\text { Out [] : } & \{\{\mathrm{x} \rightarrow-1.51851\},\{\mathrm{x} \rightarrow 0.508499\},\{\mathrm{x} \rightarrow 1.2436\} \\
& \{\mathrm{x} \rightarrow-0.116792-1.43845 I\},\{\mathrm{x} \rightarrow-0.116792+1.43845 \mathrm{I}\}\}
\end{aligned}
$$

NSolve doesn't work at all with exponential, logarithmic, trigonometric, or hyperbolic functions. You should solve these types of equations using FindRoot, and giving a starting value for x. FindRoot has the form:

```
FindRoot[equation , {variable , estimation of a sol.}]
```

The estimate of a solution is just that a value that you think is close to or somehow near the point where you expect to find a solution. FindRoot then iteratively searches for a solution starting from that estimate.

Example 7.9. Find a root of $e^{x}+\sin x$ near $x=0$.

```
\(\operatorname{In}[]: \operatorname{FindRoot}[\operatorname{Sin}[\mathrm{x}]+\operatorname{Exp}[\mathrm{x}],\{\mathrm{x}, 0\}]\)
Out []: \(\quad\{x \rightarrow-0.588533\}\)
```

Note that FindRoot[lhs $==$ rhs, $\left\{x, x_{0}, x_{1}\right\}$] searches for a solution using x_{0} and x_{1} as the first two values of x, avoiding the use of derivatives. If you specify only one starting value of x, FindRoot searches for a solution using Newton methods. If you specify two starting values, FindRoot uses a variant of the secant method.

Example 7.10. Find the positive root of $\cos x=x^{2}$ using both Newton and Secant methods.

```
\(\operatorname{In}[]:\) FindRoot \(\left[\operatorname{Cos}[x]==x^{\wedge} 2,\{x, 3\}\right]\)
Out[]: \(\quad\{x \rightarrow 0.824132\}\)
    \(\operatorname{In}[]:\) FindRoot \([\operatorname{Cos}[\mathrm{x}]==\mathrm{x} 2,\{\mathrm{x}, 3,5\}]\)
Out []: \(\quad\{x \rightarrow 0.824132\}\)
```

Also, FindRoot [lhs $==$ rhs, $\left\{\mathrm{x}, \mathrm{x}_{\text {start }}, \mathrm{x}_{\min }, \mathrm{x}_{\max }\right\}$] searches for a solution, stopping the search if x ever gets outside the range $\mathrm{x}_{\text {min }}$ to $\mathrm{x}_{\text {max }}$.

Example 7.11. The equation $\tan x=8-17 x^{2}$ has two real roots in the interval $[-1,1]$. Find these two roots.

```
\(\operatorname{In}[]:\) FindRoot \(\left[\operatorname{Tan}[\mathrm{x}]==8-17 \mathrm{x}^{\wedge} 2,\{\mathrm{x}, 0.5,-1,1\}\right]\)
Out []: \(\quad\{x \rightarrow 0.652415\}\)
    In []: FindRoot[Tan[x] ==8-17 \(\mathrm{x} \wedge 2,\{\mathrm{x},-0.75,-1,1\}]\)
Out []: \(\quad\{x \rightarrow-0.722824\}\)
```

To solve a system of two or more equations in the unknowns x, y, etc., we use $x=x_{0}, y=y_{0}, \cdots$ as initial estimates of a solution.
Example 7.12. Solve the system $\left\{\begin{aligned}-x^{3}+y^{2} & =5 \\ 3 \cos x-x+y & =4\end{aligned}\right.$
The above equations have a simultaneous solution that's close to $\mathrm{x}=1$ and $\mathrm{y}=2$. We can pinpoint it with:

$$
\begin{aligned}
\operatorname{In}[]: & \text { FindRoot }\left[\left\{y^{\wedge} 2-x^{\wedge} 3==5, y-x+3 \operatorname{Cos}[x]==4\right\},\{x, 1\},\{y, 1\}\right] \\
\text { Out }[]: & \{x \rightarrow 0.663687, y \rightarrow 2.30051\}
\end{aligned}
$$

The Command Reduce In addition to being able to solve purely algebraic equations, Mathematica can also solve some equations involving other functions like $\sin x=a$. It is important to realize that an equation such as $\sin \mathrm{x}=\mathrm{a}$ actually has an infinite number of possible solutions, in this case differing by multiples of 2π. However, Solve by default returns just one solution, but prints a message telling you that other solutions may exist. You can use Reduce to get more information.

```
Reduce[expr, vars]
reduces the statement expr by solving equations or
inequalities for vars and eliminating quantifiers
```

For example,

```
In []: Reduce[a \(\mathrm{x}+\mathrm{b}==0\), x ]
```

Out []: $\quad(b==0 \quad \& \& a==0) \|\left(a!=0 \quad \& \& \quad x==-\frac{b}{a}\right)$
In []: Reduce[Sin[x] == 1, x]
Out [] : $\quad \mathrm{C}[1] \in$ Integers \&\& $\mathrm{x}==\frac{\pi}{2}+2 \pi \mathrm{C}[1]$
In []: Reduce[$\mathrm{x}^{\wedge} 4-1==0$, x]
Out[]: $x==-1\|x==-I\| x==I \| x==1$

7.5 Inequalities

Just as the equation $x^{2}+3 x=2$ asserts that $x^{2}+3 x$ is equal to 2 , so also the inequality $x^{2}+3 x>2$ asserts that $x^{2}+3 x$ is greater than 2. In Mathematica, Reduce works not only on equations, but also on inequalities. For example, the following pair of inequalities reduces to a single inequality.

$$
\begin{aligned}
\operatorname{In}[]: & \operatorname{Reduce}[\{0<\mathrm{x}<2,1<\mathrm{x}<4\}, \mathrm{x}] \\
\operatorname{Out}[]: & 1<\mathrm{x}<2
\end{aligned}
$$

These inequalities can never simultaneously be satisfied.

```
In[]: Reduce[{x < 1, x > 3}, x]
Out[]: False
```

This inequality yields three distinct intervals.

$$
\begin{aligned}
\operatorname{In}[]: & \text { Reduce }[(x-1)(x-2)(x-3)(x-4)>0, x] \\
\text { Out }[]: & x<1| | 2<x<3| | x>4
\end{aligned}
$$

The ends of the intervals are at roots and poles.

$$
\begin{array}{cl}
\operatorname{In}[]: & \text { Reduce }\left[1<\left(x^{\wedge} 2+3 x\right) /(x+1)<2, x\right] \\
\operatorname{Out}[]: & -1-\sqrt{2}<x<-2| |-1+\sqrt{2}<x<1
\end{array}
$$

The following inequality allows only finitely many intervals.

```
In[]: Reduce[{Sin[x] > 0, 0<= x <= 2 Pi}, x]
Out[]: 0<x<\pi
```


7.6 Exercises

1. Expand the function $(1+x)^{2}(1-x)^{3}$. Ans. $-\mathrm{x}^{5}+\mathrm{x}^{4}+2 \mathrm{x}^{3}-2 \mathrm{x}^{2}-\mathrm{x}+1$
2. Factorize the polynomials
(a) $(1+x)^{3}+(1-x)^{3}$ Ans. $2\left(3 x^{2}+1\right)$
(b) $x^{2}+5$ Ans. $(x-i \sqrt{5})(x+i \sqrt{5})$
3. Write $\frac{1}{x-1}+\frac{x}{x^{2}+1}$ as single fraction.

Ans. $\frac{2 \mathrm{x}^{2}-\mathrm{x}+1}{(\mathrm{x}-1)\left(\mathrm{x}^{2}+1\right)}$
4. Decompose $\frac{x}{x^{2}+6 x+5}$ into sum of partial fractions.

Ans. $\frac{5}{4(x+5)}-\frac{1}{4(x+1)}$
5. Show that:
(a) $\frac{(1+\sqrt{5})^{10}-(1-\sqrt{5})^{10}}{1024 \sqrt{5}}=55$
(b) $\tan \left(\frac{3 \pi}{11}\right)+4 \sin \left(\frac{2 \pi}{11}\right)=\sqrt{11}$
(c) $\frac{e^{\tanh ^{-1} x}-e^{-\tanh ^{-1} x}}{e^{\tanh ^{-1} x}+e^{-\tanh ^{-1} x}}=x$
6. Find all the coefficients of $(2+3 x)^{4}$. Hint: see CoefficientList.

Ans. 16, 96, 216, 216, 81
7. What is the coefficient of x^{3} when we expand $(x+y)^{4}$? What is the coefficient of y^{2} ? Hint: see the command Coefficient.
Ans. $4,6 \mathrm{x}^{2}, 6 \mathrm{x}^{2}$
8. Find the exact value of the number $\sqrt{3+\sqrt{8}}-\sqrt{2}$.

Ans. 1
9. Compare TrigExpand and TrigReduce on the expression $\sin ^{2} x+\tan ^{2} x$.
10. Find the quotient and remainder of the polynomial division $\frac{x^{2}+x+1}{2 x+1}$.

Hint: see PolynomialQuotient and PolynomialRemainder.
Ans. $\frac{\mathrm{x}}{2}+\frac{1}{4}, \frac{3}{4}$
11. Solve each of the following.
(a) $x^{2}-3 x+1=0$
(b) $x^{5}-3 x+1=0$
(c) $x+y+z=3,2 x^{2}+3 y^{2}-6 z^{2}=-1$ and $3 z^{2}=9 x^{2}-6 y^{3}$
(d) $\tan ^{3} x+e^{2 x}=10$ over the interval $[1,5]$ Ans. 1.87452
(e) $x^{2} \geq 1$
12. (a) Solve the equation $|x-1|=3$ over real numbers.
(b) Find integer solution(s) for the equation $\left(x^{2}-3 x+1\right)^{x+1}=1$.

$$
\text { Ans. }-1,0,1,3
$$

13. Solve the equation $\sin ^{2} x-3 \sin x+2=0$ for $\sin x$
14. The Taxicab Number. The famous number theorist G. H. Hardy (1887-1947) was visiting S. Ramanujan (1887-1920) when Ramanujan was ill in a hospital. Hardy said that the number of his taxicab is 1729, seemed to him to be a dull number. Ramanujan responded that, on the contrary, 1729 is the sum of two cubes in two ways. Prove Ramanujan claim. Use the command Solve then use the new function PowersRepresentations.
Ans. 1, 12 or 9,10
15. The built-in function FindInstance[expr, vars] finds an instance of vars that makes the statement expr be True. Use Mathematica's help to read more about this function, and then use it to solve exercise (14).
16. For what truth values of the statements a, b, c, and d will the following proposition is true: $(\sim a \vee b) \wedge(c \wedge \sim d)$.
Hint: again, you may use FindInstance.

Ans. | a | b | c | d |
| :---: | :---: | :---: | :---: |
| | T | T | T |
| F | | | |
| F | T | T | F |
| F | F | T | F |

8 Single Variable Calculus

Two important machineries in calculus are differentiation and integration, and both use the concept of limit. We assume the reader is familiar with calculus as all the material in these notes.

8.1 Limits

Mathematica provides the command Limit for exploring the limit of a function. If f is a function of a single variable, Mathematica evaluates $\lim _{x \rightarrow a} f(x)$ with the following syntax:

```
Limit[ function , variable -> a ]
```

For example, $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ as shown below.

$$
\operatorname{In}[]: \operatorname{Limit}[\operatorname{Sin}[\mathrm{x}] / \mathrm{x}, \mathrm{x} \rightarrow 0
$$

$$
\text { Out []: } 1
$$

The limit of the function $\frac{|x|}{x}$ when $x \rightarrow 0$ does not exist.

```
In[]: Limit[RealAbs[x]/x, x -> 0]
Out[]: Indeterminate
```

Be careful! The function $\frac{|\mathrm{x}|}{\mathrm{x}}$ has a different limiting value at $x=0$, depending on whether you approach from above or below. We know that the right-hand limit $\lim _{\mathrm{x} \rightarrow 0^{+}} \frac{|\mathrm{x}|}{\mathrm{x}}=1$ and the left-hand $\operatorname{limit} \lim _{\mathrm{x} \rightarrow 0^{-}} \frac{|\mathrm{x}|}{\mathrm{x}}=-1$. Therefore $\lim _{x \rightarrow 0} \frac{|x|}{x}$ does not exist. To calculate a left-hand $\lim _{x \rightarrow a^{-}} f(x)$, you have to specify the Direction option in the Limit command. To find $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}$, you use:

```
In[]: Limit[RealAbs[x]/x, x -> 0, Direction -> "FromBelow"]
Out[]: -1
```

Similarly, to find the right-hand limit $\lim _{\mathrm{x} \rightarrow 0^{+}} \frac{|\mathrm{x}|}{\mathrm{x}}$, you can use:

```
In[]: Limit[RealAbs[x]/x, x -> 0, Direction -> "FromAbove"]
Out[]: 1
```

Note: To evaluate the limit from both real directions we use Direction \rightarrow Reals or Direction \rightarrow "TwoSided".

The following examples show some sample limit computations. Mathematica can compute most limits, even those that involve infinite limits, or limits at infinity:

```
1. \(\lim _{\mathrm{x} \rightarrow 0} \frac{\mathrm{e}^{\mathrm{x}}-\mathrm{x}-1}{\mathrm{x}}\)
    \(\operatorname{In}[]: \operatorname{Limit}[(\operatorname{Exp}[\mathrm{x}]-\mathrm{x}-1) / \mathrm{x}, \mathrm{x} \rightarrow 0]\)
    Out[]: 0
2. \(\lim _{x \rightarrow 3} \frac{1-x}{(x-3)^{2}}\)
    \(\operatorname{In}[]: \operatorname{Limit}\left[(1-x) /(x-3)^{\wedge} 2, x->3\right]\)
    Out[]: \(-\infty\)
3. \(\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}}\)
    In []: Limit[x/Sqrt[x^2 + 1], \(x \rightarrow\) Infinity]
    Out[]: 1
4. \(\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}+1}}\)
        In[]: Limit[x/Sqrt[x^2 + 1], x -> -Infinity]
        Out[]: -1
    5. \(\lim _{x \rightarrow 0} \frac{3 x-\sin (3 x)}{4 x-\tan (4 x)}\)
        \(\operatorname{In}[]: \operatorname{Limit}[(3 \mathrm{x}-\operatorname{Sin}[3 \mathrm{x}]) /(4 \mathrm{x}-\operatorname{Tan}[4 \mathrm{x}]), \mathrm{x} \rightarrow \mathrm{C} 0]\)
        Out [ ]: \(-\frac{27}{128}\)
```

```
6. \(\lim _{x \rightarrow \infty} \sin x\)
    In[]: Limit[Sin[x], x -> Infinity]
    Out[]: Indeterminate
7. \(\lim _{\mathrm{x} \rightarrow 1} \frac{\ln \mathrm{x}}{1-\mathrm{x}}\)
    In []: Limit[Log[x]/(1-x), x -> 1]
    Out[]: -1
```


8.2 Differentiation

If f is a function of a single variable, Mathematica will understand the symbol f^{\prime} as the derivative of f, where the prime is entered using the single-quote character. For example,

```
In[]: f[x_] := x^4
In[]: f'[x]
Out[]: 4x }\mp@subsup{}{}{3
```

Higher-order derivatives follow with the usual notation

$$
\begin{aligned}
\operatorname{In}[]: & \left\{\mathrm{f}^{\prime \prime}[\mathrm{x}], \mathrm{f}^{\prime \prime \prime}[\mathrm{a}]\right\} \\
\operatorname{Out}[]: & \left\{12 \mathrm{x}^{2}, 24 \mathrm{a}\right\}
\end{aligned}
$$

Also, you can use the differential operator D for computing derivatives.

```
D[ function , variable]
```

For example,

```
In[]: f[x_] := x^4
In[]: D[f[x],x]
Out[]: 4x 
```

To calculate a second derivative, you can use D either of these short-hand formats:

```
In []: \(\quad D[f[x], x, x]\)
Out[]: \(12 \mathrm{x}^{2}\)
\(\operatorname{In}[]: \quad D[f[x],\{x, 2\}]\)
Out[]: \(12 \mathrm{x}^{2}\)
```

Similarly, for the third derivative of f we can use either of the following

```
In[]: D[f[x],x,x,x]
Out[]: 24x
In[]: D[f[x],{x,3}]
Out[]: 24x
```

Example 8.1. If $g(t)=t^{2}+t^{3}+\ln t$, find $g^{\prime \prime}(1)$

```
In[]: g[t_] := t^2+t^3+Log[t]
In[]: g' [1]
Out[]: 7
In[]: D[g[t],{t,2}] /. {t -> 1}
```

Out[]: 7

Example 8.2. Find the equation of the tangent line for the function $g(t)$, given in the previous example at $t=1$. Remember that the equation of tangent is given by $y=g(1)+g^{\prime}(1)(t-1)$. So,

$$
\begin{aligned}
\operatorname{In}[]: & \text { Simplify }\left[g[1]+g^{\prime}[1](t-1)\right] \\
\text { Out }[]: & -4+6 t
\end{aligned}
$$

Example 8.3. Evaluate $\left.\frac{\mathrm{d}}{\mathrm{dx}}\left[\mathrm{x} \sin \left(3 \pi \mathrm{e}^{\mathrm{x}}\right)\right]\right|_{\mathrm{x}=\ln 2}$.

```
\(\operatorname{In}[]: \quad D[x \operatorname{Sin}[3 \operatorname{Pi} \operatorname{Exp}[\mathrm{x}]], \mathrm{x}] / . \quad \mathrm{x} \rightarrow \log [2]\)
Out[]: \(6 \pi \mathrm{Log}[2]\)
```

Example 8.4. Find all number(s) c that satisfy the conclusion of the Mean-Value Theorem for $f(x)=x^{2}-3 x$ on $\left[0, \frac{7}{2}\right]$. Note that f is continuous on $\left[0, \frac{7}{2}\right]$ and differentiable on $\left(0, \frac{7}{2}\right)$ since it is a polynomial. So, $c \in\left(0, \frac{7}{2}\right)$ exists and satisfies $f^{\prime}(c)=\frac{f\left(\frac{7}{2}\right)-f(0)}{\frac{7}{2}-0}$.

```
\(\operatorname{In}[]: f\left[x_{-}\right]:=x^{\wedge} 2-3 x\)
\(\operatorname{In}[]: \quad \operatorname{Solve}\left[\left\{f^{\prime}[c]==(f[7 / 2]-f[0]) /(7 / 2-0) \& \& 0<c<7 / 2\right\}, c\right]\)
Out []: \(\quad\left\{\left\{c \rightarrow \frac{7}{4}\right\}\right\}\)
```


8.3 Implicit Differentiation

In calculus, an implicit equation is an equation where the dependent variable is not explicitly expressed in terms of the independent variable. This means that an implicit equation is a statement that two or more variables are related to each other, but the relationship is not necessarily expressed as a function of one variable with respect to the others. For example, the circle centered at the origin with radius 5 represents an implicit curve whose equation is $x^{2}+y^{2}=25$. It is implicit because y is not explicitly solved for in terms of x , and vice versa.

Implicit equations often require special techniques, such as implicit differentiation, to find derivatives or solve related calculus problems. In Mathematica, the command

ImplicitD [eqn, y, x]
gives the derivative of y, assuming that the variable y represents an implicit function defined by the equation eqn.

Example 8.5. Find y^{\prime} if $x+y=\sin ^{-1} y$.

$$
\operatorname{In}[]: \operatorname{ImplicitD}[\mathrm{x}+\mathrm{y}==\operatorname{ArcSin}[\mathrm{y}], \mathrm{y}, \mathrm{x}]
$$

$$
\operatorname{Out}[]: \quad-\frac{\sqrt{1-\mathrm{y}^{2}}}{\sqrt{1-\mathrm{y}^{2}}-1}
$$

To find the higher-order implicit derivative $\frac{d^{n} y}{{d x^{n}}^{n}}$, one may use $\operatorname{ImplicitD}[$ eqn $, y,\{x, n\}$].
Example 8.6. Find $y^{\prime \prime}$ if $x^{2}+y^{2}=25$.

$$
\begin{aligned}
\operatorname{In}[]: & \operatorname{ImplicitD}\left[x^{\wedge} 2+y^{\wedge} 2==25, y,\{x, 2\}\right] \\
\operatorname{Out}[]: & \frac{-x^{2}-y^{2}}{\mathrm{y}^{3}}
\end{aligned}
$$

8.4 Maximum and Minimum

In Mathematica, Maximize $[f, x]$ try to find the absolute maximum value of f with respect to x on its natural domain or a given domain. While Minimize $[f, x]$ try to find the absolute minimum value of f with respect to x .

$$
\begin{aligned}
\text { In [] }: & \text { Maximize }\left[-2 \mathrm{x}^{\wedge} 2-3 \mathrm{x}+5, \mathrm{x}\right] \\
\text { Out [] : } & \left\{\frac{49}{8},\left\{\mathrm{x} \rightarrow-\frac{3}{4}\right\}\right\} \\
\text { In [] : } & \text { Maximize }[\{\operatorname{Sin}[\mathrm{x}], 0<=\mathrm{x}<=2 \mathrm{Pi}\}, \mathrm{x}] \\
\text { Out []: } & \left\{1,\left\{\mathrm{x} \rightarrow \frac{\pi}{2}\right\}\right\} \\
\text { In [] : } & \operatorname{Minimize}[\{\operatorname{Cos}[\mathrm{x}],-3 \mathrm{Pi} / 4<=\mathrm{x}<=5 \mathrm{Pi} / 6\}, \mathrm{x}] \\
\operatorname{Out}[]: & \left\{-\frac{\sqrt{3}}{2},\left\{\mathrm{x} \rightarrow \frac{5 \pi}{6}\right\}\right\}
\end{aligned}
$$

Finding local maximum and minimum values of f is available in Mathematica using the commands FindMinimum and FindMaximum as follows:

$$
\begin{aligned}
\operatorname{In}[]: & \text { FindMinimum }\left[x^{\wedge} 3-x, x\right] \\
\text { Out }[]: & \{-0.3849,\{x \rightarrow 0.57735\}\} \\
\operatorname{In}[]: & \text { FindMaximum }\left[x^{\wedge} 3-x,\{x,-4\}\right] \\
\text { Out }[]: & \{0.3849,\{x \rightarrow-0.57735\}\}
\end{aligned}
$$

8.5 Integration

$F(x)$ is an antiderivative of $f(x)$ if $F^{\prime}(x)=f(x)$. The symbol $\int f(x) d x$ means "find all antiderivatives of $f(x)$." Because all antiderivatives of a given function differ by a constant, we usually write $\int f(x) d x=F(x)+C$ where C represents an arbitrary constant. You can use the Integrate command to compute $\int f(x) d x$. It has the form:

Integrate[f[x], x]
You specify a function or an expression to integrate, as well as the variable in which the integration is to take place. For example, to compute $\int \mathrm{x}^{3} \mathrm{dx}$, use this syntax:

In []: Integrate[x^3, x]
Out []: $\frac{x^{4}}{4}$
Mathematica can integrate almost every integral that can be done using standard integration methods (e.g., substitution, integration by parts, partial fractions). Here are some typical integrations:

1. $\int \mathrm{x} \ln \mathrm{x} d \mathrm{x}$

In []: Integrate[x $\log [\mathrm{x}], \mathrm{x}]$
Out [] : $\quad-\frac{x^{2}}{4}+\frac{1}{2} x^{2} \log [x]$
2. $\int \frac{1}{1-x^{2}} d x$

In []: Integrate[1/(1-x^2), x]
Out []: $\quad-\frac{1}{2} \log [1-x]+\frac{1}{2} \log [1+x]$
3. $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$
$\operatorname{In}[]:$ Integrate[Exp[Sqrt[x]]/Sqrt[x], x]
Out[]: $2 \mathrm{e}^{\sqrt{x}}$
4. $\int \sqrt{4-9 x^{2}} d x$

In []: Integrate[Sqrt[4-9 x^2], x]
Out [] : $\quad \frac{1}{2} \mathrm{x} \sqrt{4-9 \mathrm{x}^{2}}+\frac{2}{3} \sin ^{-1}\left(\frac{3 \mathrm{x}}{2}\right)$
5. $\int \frac{\mathrm{x}}{1+\mathrm{x}^{4}} \mathrm{dx}$

In []: Integrate[x/(1+x^4), $x]$
Out []: $\frac{\tan ^{-1}\left(\mathrm{x}^{2}\right)}{2}$
6. $\int \frac{\mathrm{xe}^{\mathrm{x}}}{(1+\mathrm{x})^{2}} \mathrm{dx}$

In []: Integrate[x $\left.\operatorname{Exp}[\mathrm{x}] /(1+\mathrm{x})^{\wedge} 2, \mathrm{x}\right]$
Out[]: $\frac{\mathrm{e}^{\mathrm{x}}}{1+\mathrm{x}}$
7. $\int \cos \left(\sin \left(y^{2}\right)\right) d y$
$\operatorname{In}[]:$ Integrate[Cos[Sin[y^2]], y]
Out []: $\quad \int \cos \left(\sin \left(\mathrm{y}^{2}\right)\right) \mathrm{dy}$
As you see in the last of the examples above, the integrand has no closed-form anti-derivative. So, Mathematica will return your input unevaluated whenever it can't handle an integral. This can mean either that it's not possible to find an antiderivative in closed form or that Mathematica hasn't yet been programmed to do the integral.

Definite Integral A definite integral $\int_{a}^{b} f(x) d x$ is computed in Mathematica with this form of the Integrate command:

```
Integrate[f[x], {x,a,b}]
```

Mathematica will try to find an antiderivative first, then evaluate it at the endpoints and subtract (according to the Fundamental Theorem of Calculus). Here are some examples:

1. $\int_{-1}^{2} x^{2} d x$

In[]: Integrate[x^2, $\{x,-1,2\}]$
Out[]: 3
2. $\int_{0}^{\infty} \frac{1}{4+\mathrm{y}^{2}} \mathrm{dy}$

In[]: Integrate[1/(4 + $\left.\mathrm{y}^{\wedge} 2\right)$, $\{\mathrm{y}, 0$, Infinity $\}$]
Out[]: $\frac{\pi}{4}$
3. $\int_{0}^{1} \sqrt{\sin \left(t^{2}\right)} d t$
$\operatorname{In}[]:$ Integrate[Sqrt[Sin[t^2]], $\{t, 0,1\}]$
Out []: $\quad \int_{0}^{1} \sqrt{\sin \left(t^{2}\right)} d t$
In the last example, Mathematica can't evaluate an antiderivative at the endpoints. The NIntegrate command finds a numerical approximation for a definite integral $\int_{a}^{b} f(x) d x$ with the following syntax:

NIntegrate[f[x], \{x,a,b\}]
Notice that its syntax is the same as the Integrate command. For example,

```
In[]: NIntegrate[x^2, {x, -1, 2}]
Out[]: 3
    In[]: NIntegrate[Sqrt[Sin[t`2]], {t, 0, 1}]
Out[]: 0.486177
```

The NIntegrate command doesn't attempt to find a symbolic antiderivative, so it's quick and it works with almost all integrands, including $\int_{0}^{1} \sqrt{\sin \left(\mathrm{t}^{2}\right)} d t$ for which Integrate failed (as you saw above).

8.6 Sequences

A sequence is a function whose domain is the set of positive integers. The terms of the sequence $\left\{a_{n}\right\}$ are $a_{1}, a_{2}, a_{3}, \cdots$. The term a_{n} is called the general term of the sequence. For example, the sequence $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \cdots$ has the general term $a_{n}=\frac{n}{n+1}$. In Mathematica, we attempt to find a simple function that yields the sequence $\left\{a_{n}\right\}$ when given successive integer arguments by using the command FindSequenceFunction.

```
In []: FindSequenceFunction \([\{1 / 2,2 / 3,3 / 4,4 / 5\}, n]\)
Out[]: \(\frac{\mathrm{n}}{\mathrm{n}+1}\)
```

A sequence $\left\{a_{n}\right\}$ is said to converge to the limit ℓ if $\lim _{n \rightarrow \infty} a_{n}=\ell$. A sequence that does not converge to some finite limit is said to diverge. The command DiscreteLimit gives the limit $\lim _{n \rightarrow \infty} f_{n}$ for the sequence f_{n} as n tends to infinity over the integers.

Example 8.7. Determine whether the sequence converges or diverges.

```
1. \(\frac{\sqrt{9 n^{2}+4 n-7}}{2 n+1}\)
    In []: DiscreteLimit[Sqrt[9n^2+4n-7]/(2n+1), \(n \rightarrow\) Infinity]
    Out[]: \(\frac{3}{2}\)
2. \(\frac{\mathrm{n}^{\mathrm{n}}}{\mathrm{n}!}\)
    In[]: DiscreteLimit[n^n/n!, n \(\rightarrow\) Infinity]
    Out[]: \(\infty\)
```


8.7 Series

You can use the Sum command to add up a finite number of terms of an indexed expression. To find $\sum_{\mathrm{n}=\mathrm{a}}^{\mathrm{b}}$ for an expression, you type:

$$
\text { Sum [expression , }\{n, a, b\}]
$$

For example, the value of $\sum_{n=1}^{20} n^{2}$ is

```
In[]: Sum[ n^2 , {n,1,20}]
Out[]: 2870
```

The Sum command has moderate success even with certain symbolic summations. For example, $\sum_{n=0}^{k} r^{n}$ is a partial sum for a geometric series:

$$
\begin{aligned}
\operatorname{In}[]: & \operatorname{Sum}\left[\mathrm{r}^{\wedge} \mathrm{n},\{\mathrm{n}, 0, \mathrm{k}\}\right] \\
\operatorname{Out}[]: & \frac{-1+\mathrm{r}^{1+\mathrm{k}}}{-1+\mathrm{r}}
\end{aligned}
$$

Example 8.8. Show that $1+2+3+\cdots+\mathrm{k}=\frac{\mathrm{k}(\mathrm{k}+1)}{2}$.

$$
\begin{aligned}
\operatorname{In}[]: & \operatorname{Sum}[\mathrm{n},\{\mathrm{n}, 1, \mathrm{k}\}] \\
\operatorname{Out}[]: & \frac{1}{2} \mathrm{k}(\mathrm{k}+1)
\end{aligned}
$$

If you want an approximate value for a summation, use NSum instead. It has the same syntax as Sum. For example,

```
In[]: NSum[Sin[n], {n, 0, 500}]
Out[]: 1.4903
```

Both the Sum and NSum commands allow you to specify an infinite range, providing the ability to evaluate certain infinite series. Each is also pretty good at recognizing series that do not converge. In particular, Sum can symbolically reproduce almost all standard series computations found in Calculus books and tables. For example,

1. $\sum_{\mathrm{n}=0}^{\infty}\left(\mathrm{ar}^{\mathrm{n}}\right)$ (* Geometric Series *)
$\operatorname{In}[]: \quad \operatorname{Sum}\left[a r^{\wedge} n,\{n, 0\right.$, Infinity $\left.\}\right]$
Out[]: $\frac{a}{1-r}$
2. $\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}}$ (* Divergent Series *)

In []: Sum[1/n, \{n, 1, Infinity $\}$]
Out[]: Sum::div: Sum does not converge.
3. $\sum_{\mathrm{n}=1}^{\infty} \frac{(-1)^{\mathrm{n}}}{\mathrm{n}}$ (* Alternating Series *)
$\operatorname{In}[]: \quad \operatorname{Sum}\left[(-1)^{\wedge} n / n,\{n, 1, \operatorname{Infinity}\}\right]$
Out[]: - Log[2]
4. $\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{2}}$ (* Convergent p-Series *)
$\operatorname{In}[]: \quad \operatorname{Sum}\left[1 / n^{\wedge} 2,\{n, 1, \operatorname{Infinity}\}\right]$
Out[]: $\frac{\pi^{2}}{6}$
5. $\sum_{n=0}^{\infty} \frac{2^{n}}{n!} \quad\left(*\right.$ Taylor Series of $\left.e^{x} *\right)$

In []: $\operatorname{Sum}\left[2^{\wedge} n / n!,\{n, 0\right.$, Infinity $\left.\}\right]$
Out[]: e^{2}
6. $\sum_{\mathrm{n}=0}^{\infty} \sin \left(\mathrm{e}^{-\mathrm{n}}\right) \quad(*$ Unevaluated $*)$
$\operatorname{In}[]: \operatorname{Sum}[\operatorname{Sin}[\operatorname{Exp}[-n]], \quad\{n, 0, \operatorname{Infinity}\}]$
Out [] : $\quad \sum_{n=0}^{\infty} \sin \left(e^{-n}\right)$

Notice that Sum returns its input unevaluated if it doesn't have a known simplification or result for it, or if it is known to not converge (see the last example above). If you do not receive an error message telling you that a series does not converge then you can investigate using NSum.

$$
\begin{array}{ll}
\operatorname{In}[]: & \text { NSum }[\operatorname{Sin}[\operatorname{Exp}[-n]],\{n, 0, \operatorname{Infinity}\}] \\
\text { Out }[]: & 1.41477
\end{array}
$$

Example 8.9. Find the $\operatorname{sum} \frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3}+\cdots+\frac{1}{1+2+3+\cdots+99}$.

$$
\operatorname{In}[]: \quad \operatorname{Sum}[1 / \operatorname{Sum}[j, \quad\{j, 1, i\}],\{i, 1,99\}]
$$

$$
\text { Out [] : } \frac{99}{50}
$$

The command SumConvergence gives conditions for the sum $\sum_{n}^{\infty} f_{n}$ to be convergent. For example, the p-series $\sum_{\mathrm{n}}^{\infty} \frac{1}{\mathrm{n}^{\mathrm{p}}}$ converges for all real numbers $p>1$.
$\operatorname{In}[]:$ Assuming[Element[p, Reals], SumConvergence[1/n^p, $n]]$
Out []: $\mathrm{p}>1$
Example 8.10. Find the interval of convergence for the real power series $\sum_{n}^{\infty} \frac{x^{n}}{n 3^{n}}$.

$$
\begin{array}{ll}
\operatorname{In}[]: & \text { SumConvergence } \left.\left[\left(x^{\wedge} n\right) /\left(n 3^{\wedge} n\right), n, \text { Assumptions }->\text { Element [x,Reals }\right]\right] \\
\text { Out }[]: & -3 \leq x<3
\end{array}
$$

8.8 Taylor Polynomials

Recall that if a function f satisfies certain reasonable conditions, then it can be approximated by a polynomial $\mathrm{p}_{\mathrm{n}}(\mathrm{x})$ of degree n near a point $\mathrm{x}=\mathrm{a}$ defined by:

$$
p_{n}(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

A composition of the Normal and Series commands as follows will more easily produce the Taylor polynomial of degree n for a function about a point $\mathrm{x}=\mathrm{a}$:

Normal[Series[function, $\{\mathrm{x}, \mathrm{a}, \mathrm{n}\}$]]
For example,

$$
\begin{aligned}
\operatorname{In}[]: & \operatorname{Normal}[\text { Series }[\operatorname{Exp}[x],\{x, 0,6\}]] \\
\operatorname{Out}[]: & 1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}
\end{aligned}
$$

The following command will give an approximate value of e^{3} using the Taylor polynomial of degree 6 for e^{x} about $\mathrm{x}=0$:

$$
\begin{aligned}
\operatorname{In}[]: & \text { Normal[Series[Exp[x], }\{x, 0,6\}]] / .\{x->3\} / / N \\
\text { Out }[]: & 19.4125
\end{aligned}
$$

The Series command by itself actually gives a Taylor polynomial together with a remainder term which shows its order using the notation $\mathrm{O}[\mathrm{x}]$.

$$
\begin{aligned}
\operatorname{In}[]: & \text { Series }[\operatorname{Exp}[x], \quad\{x, 0,6\}] \\
\text { Out }[]: & 1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+0[x]^{7}
\end{aligned}
$$

Applying Normal to this result removes the remainder term and give the Taylor polynomial.

8.9 Exercises

1. Evaluate each of the following limits:
(a) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$.
(b) $\lim _{x \rightarrow \infty} \frac{3 x-\sin (3 x)}{4 x-\tan (4 x)}$.
(c) $\lim _{x \rightarrow \infty} \frac{\tan ^{-1} x}{e^{x}}$.
(d) $\lim _{x \rightarrow 1} \frac{1-x}{\left|x^{2}+x-2\right|}$.
(e) $\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{b x}$
2. Find the domain and range of each of the following functions.

Hint: use the commands FunctionDomain and FunctionRange
(a) $f(x)=\frac{1}{x-x^{2}}$.

Ans. $\mathrm{x}<0 \vee 0<\mathrm{x}<1 \vee \mathrm{x}>1, \mathrm{y}<0 \vee \mathrm{y} \geq 4$
(b) $\sqrt{|\mathrm{x}|}$.

$$
\text { Ans. } \mathbb{R}, \mathrm{y} \geq 0
$$

(c) $f(x)=2 \ln x$ and $g(x)=\ln \left(x^{2}\right)$.
3. Let $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}2 x^{2} & x<1 \\ -3 x+5 & x \geq 1\end{array}\right.$. Find: $\mathrm{f}^{\prime}(2)$ and $\mathrm{f}^{\prime}(1)$.

Ans. -3 , does not exist
4. Let $f(x)=x^{3}+e^{x}+\sin x$. Find: $f^{\prime}(x)$ and $f^{\prime \prime}(0)$.
5. Find $\frac{\mathrm{d}^{87}}{\mathrm{dx}^{87}}[\mathrm{x} \sin \mathrm{x}]$ at $\mathrm{x}=\frac{\pi}{2}$.
Ans. -87
6. Given that $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}+3 ; x \in[-2,4]$. Find for f :
(a) Critical numbers.
(b) Intervals of increasing and decreasing.
(c) Absolute maximum and absolute minimum values.
(d) Intervals of concavity.
(e) Inflection points.
7. Evaluate each of the following integrals:
(a) $\int x^{2} \sqrt{1+x^{2}} d x$
(b) $\int \frac{x+1}{x^{2}-9} d x$
(c) $\int \frac{e^{1 / x}}{x^{2}} d x$
(d) $\int x^{2} \cos x d x$
(e) $\int_{1}^{4} \frac{x^{2}+1}{\sqrt{x}} d x$
(f) $\int_{0}^{\infty} e^{-x^{2}} d x$
(g) $\int_{0}^{\pi / 2} \sqrt{\sin x} d x$
8. Find the values of A such that $\lim _{x \rightarrow A}\left(\frac{1}{x-3}-\frac{6}{x^{2}-9}\right)=\lim _{x \rightarrow A} \frac{x^{2}-x-12}{36 x-144}$. Ans. -9 or 3
9. Assume $n \geq 1$, find a formula for the $n^{\text {th }}$ order derivative of each of the following functions.
(a) $f(x)=x e^{x}$.
(b) $g(x)=\sin x$
(c) $h(x)=x \cos x$
10. Show that $(1+2+\cdots+n)^{2}=1^{3}+2^{3}+\cdots+n^{3}$.
11. Evaluate the following:
(a) $\sum_{n=0}^{\infty}(-1)^{n}$
(b) $\sum_{\mathrm{n}=0}^{\infty}(-1)^{\mathrm{n}} \frac{\mathrm{x}^{2 \mathrm{n}}}{(2 \mathrm{n})!}$
12. Find Taylor polynomial of degree 10 for $f(x)=\sqrt{x}$ about $x=1$ and use it to approximate the value of $\sqrt{1.5}$.
13. Determine whether the series converges or diverges.

$$
1+\frac{1}{2}+\frac{1}{3}-\frac{1}{4}-\frac{1}{5}-\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\cdots
$$

Ans. $\frac{1}{9}(2 \pi \sqrt{3}+\log (8))$
14. Find $\sum_{n=0}^{\infty} \frac{1}{F_{2^{n}}}$ where F_{m} is the $m^{\text {th }}$ term of Fibonacci sequence. Ans. $\frac{1}{2}(7-\sqrt{5})$
15. Find the interval of convergence of the power series $\sum_{n}^{\infty} \frac{(x-3)^{n}}{\sqrt{n}}$.
16. Find the general term of each of the following sequences.
(a) $-\frac{1}{2}, \frac{1}{8},-\frac{1}{24}, \frac{1}{64},-\frac{1}{160}, \frac{1}{384}, \cdots$
(b) $2,3,5,7,11,13, \cdots$
(c) $1,0,-1,0,1,0,-1,0, \cdots$
17. Determine whether the sequence $-\frac{1}{5}, \frac{1}{25},-\frac{1}{125}, \frac{1}{625}, \cdots$ converges or diverges.

9 Graphics in Mathematica

9.1 Making Graphs

There are many ways that you can plot a two-dimensional picture in Mathematica. In this chapter, we will concentrate on drawing the graph of a function. You draw the graph of a function $y=f(x)$ with the Plot command. To see the graph of $f(x)=x^{2}$ over the interval $[-3,2]$, type

In general, to plot a function of x over an interval $x \in[a, b]$, you type:

$$
\operatorname{Plot}[f(x),\{x, a, b\}]
$$

When you use the Plot command, you usually don not need to specify the vertical range of the graph. Mathematica automatically adjusts the vertical range to show you the full range of (vertical) values covered by the plot. If you wish, you can explicitly control the horizontal and vertical range by adding a PlotRange specification in the Plot command. For example:

In []: Plot $[x \wedge 3,\{x,-2,2\}$, PlotRange $->\{-3,3\}]$

Out []:

Here you see only the portion of the graph with y-values between -3 and 3 . Thus, using Plot with the PlotRange option is similar to setting up a view window on a graphing calculator. You can specify a range of x-values as well, by using the option PlotRange-> $\{\{\mathrm{Xmin}, \mathrm{Xmax}\},\{Y \min , Y m a x\}\}$.

Proportion and Aspect Ratio When you are working in a Mathematica notebook, you can resize a picture by first clicking on it and then dragging along one of its comers or edges with the mouse. By default, no matter how big or small a picture you create, the aspect ratio of the picture (the ratio of its height to width) will remain the same. The default aspect ratio is very close to the relative proportions of a standard credit card. You can change the aspect ratio for a Plot command by directly specifying a value for its AspectRatio. For example, the height of the following picture is about one-fifth its width:

In []: Plot[2 $\operatorname{Sin}[\mathrm{x}],\{\mathrm{x},-3,3\}$, AspectRatio $->1 / 5]$

Out []:

To make the units on the x - and y-axes have the same length, we set AspectRatio to Automatic.

$$
\operatorname{In}[]: \operatorname{Plot}[2 \operatorname{Sin}[x],\{x,-3,3\} \text {, AspectRatio -> Automatic] }
$$

Out []:

Plotting Multiple Expressions You can plot several functions in the same picture by listing all the functions separated by commas, enclosing them in curly braces. For example:
$\operatorname{In}[]: \operatorname{Plot}[\{\operatorname{Sin}[\mathrm{x}], \operatorname{Cos}[\mathrm{x}]\},\{\mathrm{x},-\mathrm{Pi}, \operatorname{Pi}\}]$

Out []:

Several graphics produced independently can be combined into a single picture by using the Show command. First, name each of the graphics as they are produced. Then, use the Show command to combine them into a single output.

$\operatorname{In}[]:$	$\operatorname{graph} 1=\operatorname{Plot}[\operatorname{Cos}[\mathrm{x}],\{\mathrm{x},-3,1\}] ;$
$\operatorname{In}[]:$	$\operatorname{graph} 2=\operatorname{Plot}[\operatorname{Sin}[\mathrm{x}],\{\mathrm{x}, 0,3\}] ;$
$\operatorname{In}[]:$	$\operatorname{graph} 3=\operatorname{Plot}[0.5,\{\mathrm{x},-2,4\}] ;$
$\operatorname{In}[]:$	Show[graph1, graph2, graph3]

Out[]:
Notice that the combined graphic above is shown only over the range $[-3,1]$, which is the range of the first graphic listed in the Show command. This is a default behavior of Show, it arranges its output according to the options attached to the first graphic. We can change this behavior by specifying PlotRange -> All in the Show command. The result is:

In []: Show[graph1, graph2, graph3, PlotRange \rightarrow All]

Out []:

We can use the GraphicsRow command to ask Mathematica to show several plots side by side:
In []: Show[GraphicsRow[\{graph1, graph2\}]]

The GraphicsRow command has several options that can be specified. For example, one (Alignment)allows for adjusting the alignment of the graphics, while another (Dividers)specifies whether lines should be drawn between and/or above and below the graphics. Mathematica also has a GraphicsGrid command that allows you to arrange graphics in a two-dimensional display.

The PlotStyle Option You can add more properties to a graph by adjusting the color, thickness, opacity level, and dashing pattern of the plot. This can be done by specifying one or multiple PlotStyle options for the Plot command. It has the syntax:

```
Plot[f[x], {x,a,b}, PlotStyle -> {Option 1, Option 2,...}]
```

For example, we will make the sine curve red with a dashed line and the cosine curve a thick blue. Here is how we define these style features, using the names style1 and style2.

```
In[]: style1 = {Red, Dashing[{0.02, 0.02}]};
In[]: style2 = {Blue, Thickness[0.02]};
In[]: Plot[{Sin[x],Cos[x]},{x,-Pi,Pi}, PlotStyle->{style1,style2}]
```

Out []:

Thickness[0.02] means that lines will be drawn to be about 2% of the width of the graphic, while Dashing [\{0.02,0 . 04\}] means that the curve will be drawn solid for about 2% of the width of the graphic, then 2% will be omitted, and so on.

9.2 Plotting Curves

In the previous section you saw how to use Plot to draw curves that are graphs of functions. But not all curves are the graphs of functions.

Parametric Plots A two-dimensional (2D) parametric curve is usually defined by an ordered pair of coordinate functions $(x(t), y(t))$, with the parameter t allowed to vary over some set. You use the ParametricPlot command to draw such a curve over a fixed interval $[\mathrm{a}, \mathrm{b}]$. The command has the form:

$$
\operatorname{ParametricPlot}[\{x[t], y[t]\}, \quad\{t, a, b\}]
$$

For example, to see the curve $\left(\mathrm{t}^{2}, \mathrm{t}+1\right)$ for $\mathrm{t} \in[-2,2]$, we use:
$\operatorname{In}[]:$ ParametricPlot[\{t^2, $\mathrm{t}+1\},\{\mathrm{t},-2,2\}]$

Out []:

As with the Plot command, Mathematica will always, by default, show you a large enough picture to see all values on the curve. If necessary, you can specify a given PlotRange for ParametricPlot. Also, unlike the Plot command, ParametricPlot uses the option AspectRatio \rightarrow Automatic by default. Thus, curves which are circles will truly appear as circles:

In []: ParametricPlot[\{Cos[t], $\operatorname{Sin}[t]\},\{t, 0,2 \operatorname{Pi}\}]$

Out []:

However, setting AspectRatio \rightarrow Automatic is not always the right thing to do, as you will see in drawing the curve $\left(\mathrm{t}, \mathrm{t}^{3}\right)$ where $t \in[0,5]$ (try it by your self). You can draw a better picture with the following command

In []: ParametricPlot[\{t, $\left.\mathrm{t}^{\wedge} 3\right\},\{\mathrm{t}, 0,5\}$, AspectRatio->1/GoldenRatio]

Out []:

We suggest you redraw the graphic either by setting AspectRatio $\rightarrow 1$ which gives a square graphic, or by setting AspectRatio $\rightarrow l /$ GoldenRatio which gives the standard proportion graphic you see with most other commands.

Multiple Curves The ParametricPlot command lets you plot several curves together, just like the Plot command. To do this, you include the formulas for the curves in a list. For example, to draw the horizontal line $(t, 1)$, the vertical line $(2, t)$, and the curve $(\cos t, t)$ for $t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, we use the command

Plotting in Polar Coordinates If a curve is given in polar coordinates (r, θ), where r is the radius, θ is the angle in radians, and $\mathrm{r}=\mathrm{f}(\theta)$ for $\theta \in\left[\theta_{1}, \theta_{2}\right]$, then we can draw it with the PolarPlot command using the syntax:

```
PolarPlot[f[theta], {theta, 的, 有}]
```

Notice that this form is very similar to that of the Plot command you already know. For example, to plot the three-leaf rose $r=2 \cos (3 \theta)$, use:

In []: PolarPlot[2 Cos[3 theta], \{theta, 0, 2Pi\}]
Out []:
The default setting for PolarPlot is AspectRatio \rightarrow Automatic. As we discussed in the case of ParametricPlot, you may want to directly specify the value of the option AspectRatio for a PolarPlot command that does not display well.

Just as with the Plot and ParametricPlot commands, you can plot more than one polar curve at the same time by entering all of them using a list. For example, you can plot the spirals $r=\frac{\theta}{2 \pi}, r=\left(\frac{\theta}{2 \pi}\right)^{2}$, and the circle $r=1$ all in the same picture with:

In []: PolarPlot[\{theta/(2Pi), (theta/(2Pi))~2, 1\}, \{theta, 0, 2Pi\}]

Out []:

Plotting Graphs of Implicit Equations When a curve is defined by an equation in two variables, you can draw the curve with the ContourPlot, a command whose full functionality we will discuss more carefully later. For now, we will use ContourPlot to draw just that portion of the curve defined by an equation in, say, the two variables x and y, which lies within a rectangle $x \in[a, b]$ and $y \in[c, d]$ with the syntax:

ContourPlot[equation of x and $\mathrm{y},\{\mathrm{x}, \mathrm{a}, \mathrm{b}\},\{\mathrm{y}, \mathrm{c}, \mathrm{d}\}]$

For example, to see the unit circle $x^{2}+y^{2}=1$ which we know lies within the rectangle $[-1,1] \times[-1,1]$, we use:

You can plot several curves defined by equations in a single command. The syntax is exactly the same as it is for the Plot, ParametricPlot, and PolarPlot commands. For example, we will plot the portions of the curves $x^{2}+3 x y+y^{3}=25, x^{2}+3 x y+y^{3}=10$, and $x^{2}+3 x y+y^{3}=0$ which lie within the rectangle $-10 \leq \mathrm{x} \leq 10$ and $-7 \leq \mathrm{y} \leq 4$. We will remove the frame, and draw the axes within the picture itself.
$\operatorname{In}[]: f\left[x_{-}, y_{-}\right]:=x^{\wedge} 2+3 x y+y^{\wedge} 3$;
In []: ContourPlot $[\{f[x, y]==25, f[x, y]==10, f[x, y]==0\}$,

$$
\{\mathrm{x},-10,10\},\{\mathrm{y},-7,4\} \text {, Frame->False, Axes->True] }
$$

An interesting feature of the default output from ContourPlot is that if you position the mouse over any of the three curves shown in the graphic above, you will see the equation shown as a tool tip on the mouse.

Tick Marks Each of the commands Plot, ParametricPlot, PolarPlot, and ContourPlot allows you to control the placement of tick marks on each of the axes using the Ticks option. This is done as we do in the following example. Suppose we draw the graph of $x+\sin (3 x)$, and we wish to have tick marks on the x -axis at $\frac{\pi}{6}, \frac{2 \pi}{6}, \frac{3 \pi}{6}, \frac{4 \pi}{6}, \frac{5 \pi}{6}$ and on the y -axis at $1,2,3$.

In []: Plot[x+Sin[3x], $\{x, 0, P i\}$, Ticks->\{Range[5]Pi/6, \{1, 2, 3\}\}]

You can specify the labels to be shown at given tick marks.

Labels The AxesLabel and PlotLabel options allow you to specify labels for one or both of the axes, or for the output graphic as a whole, respectively.
$\operatorname{In}[]: \operatorname{Plot}[\operatorname{Cos}[\mathrm{x}]+15,\{\mathrm{x}, 0,4 \mathrm{Pi}\}$, AxesLabel->\{"day","price"\}, PlotLabel->"Daily Stock Price"]

If your picture is framed, then you must use the FrameLabel option in place of AxesLabel.
In []: ContourPlot $\left[x^{\wedge} 2 / 16+y^{\wedge} 2 / 9==1,\{x,-4,4\},\{y,-3,3\}\right.$, Axes->True, AspectRatio->Automatic, FrameLabel->\{"x-axis", "y-axis"\}, PlotLabel->"Ellipse"]

9.3 Making Graphs in Space

The easiest way to sketch a surface in three dimensions (3D) is to use the Plot3D command. You input an expression that gives the height of a surface above the $x y$-plane, in terms of the independent variables x and y . You must also specify intervals $\mathrm{x} \in\left[\mathrm{x}_{0}, \mathrm{x}_{1}\right]$ and $\mathrm{y} \in\left[\mathrm{y}_{0}, \mathrm{y}_{1}\right]$. The Plot3D command then has the form:

Plot3D[expression of x and $y,\{x, x 0, x 1\},\{y, y 0, y 1\}]$
For example, The surface whose height is $z=4-x^{2}-y^{2}$ above the $x y-p l a n e$, over the rectangle $[-2,2] \times$ $[-2,2]$, is seen with:

$$
\operatorname{In}[]: \quad P \operatorname{lot} 3 D\left[4-x^{\wedge} 2-y^{\wedge} 2, \quad\{x,-2,2\}, \quad\{y,-2,2\}\right]
$$

Out []:

The graph of the function $f(x, y)=x^{2}-y^{2}$ looks like a saddle if we take, for example, $x, y \in[-3,3]$ as shown below.

$$
\operatorname{In}[]: \quad P \operatorname{lot} 3 D\left[x^{\wedge} 2-y^{\wedge} 2, \quad\{x,-3,3\}, \quad\{y,-3,3\}\right]
$$

Out []:

There are a number of options that you can use to add more character to the graph of a function $z=f(x, y)$ with Plot3D. For example,

1. AxesLabel : Provides names to label each of the three axes.
2. BoxRatios : Scales the graphic so that it appears within a certain lengths of a box.
3. PlotRange : Specify the range of one or more of the variables x, y, and z.
4. Mesh \rightarrow False : Omit the mesh on the graph.
5. PlotStyle \rightarrow Green : Color the graph green.

For example see how the sombrero looks like using some of Plot3D options. Note that the sombrero is given by the function $f(x, y)=\frac{\sin \left(\sqrt{x^{2}+y^{2}}\right)}{\sqrt{x^{2}+y^{2}}}$.
$\operatorname{In}[]: \operatorname{Plot} 3 D\left[\operatorname{Sin}\left[\operatorname{Sqrt}\left[x^{\wedge} 2+y^{\wedge} 2\right]\right] / \operatorname{Sqrt}\left[x^{\wedge} 2+y^{\wedge} 2\right],\{x,-7,7\}\right.$, $\{y,-7,7\}$, PlotPoints->50, PlotRange->All, AxesLabel->\{"x", "y", "z"\}, Mesh->False, BoxRatios->\{1,1,1\}]

Mathematica includes very useful Notebook feature for working with 3D graphics. As you move over a 3D graphic with the mouse, you will see that the cursor changes. If you now click and drag with the mouse, you will be able to rotate the graphic in real time. This lets you view the surface from many different angles. Every three-dimensional picture drawn in Mathematica will be shown from a specified ViewPoint. Specifying a ViewPoint is the same as describing how your eye is located with respect to the graphic being drawn. Let us show you how it is done. You input the ViewPoint option in the form ViewPoint $->\{a, b, c\}$, where the values a, b, and c describe the position of your eye relative to the object that you are viewing. Positive values of a, b, and c place you "in front of", "to the right of", and "above" the object, with respect to the direction of the positive x^{-}, y^{-}and z-coordinate axes, respectively. Negative values place you "behind", "to the left of", and "below" the object. A value of zero for any of these three places you "at the center". Let us think of the graph of $f(x, y)=\left(x^{2}+y^{2}\right) e^{-\frac{x^{2}}{400}-\frac{y^{2}}{100}}$ as being twin mountains. Let us take a "helicopter ride" around these mountains using three ViewPoints: $\{3,1,1\},\{3,2,-1\}$, and $\{0,100,0\}$, respectively.

```
In[]: f[x-, y] := (x^2+y^2) Exp[-x^2/400 - y^2/100];
In[]: vp1=Plot3D[f[x, y],{x,-40,40},{y, -40,40},ViewPoint->{3,1,1}];
In[]: vp2=Plot3D[f[x, y],{x,-40,40},{y,-40,40},ViewPoint->{3,2,-1}];
In[]: vp3=Plot3D[f[x, y],{x,-40,40},{y,-40,40},ViewPoint->{0, 100,0}];
In[]: GraphicsRow[{vp1, vp2, vp3}, ImageSize -> Full]
```

Out []:

9.4 Surfaces in Cylindrical and Spherical Coordinates

Surfaces are sometimes more easily described in terms of the cylindrical or spherical coordinate systems. You can draw such a surface easily with the Mathematica commands RevolutionPlot3D and SphericalPlot3D commands, respectively.
Points in the cylindrical coordinate system are described by quantities r, θ, and z, where
r is the horizontal radial distance of the point from the z-axis;
θ is the horizontal angle measured from the x -axis; and
z is the z-coordinate in standard rectangular coordinates.
To draw the surface $z=f(r, \theta)$ for $r \in\left[r_{0}, r_{1}\right]$ and $\theta \in\left[\theta_{0}, \theta_{1}\right]$, you enter:
RevolutionPlot3D[f[r, θ], $\left.\left\{r, r_{1}, r_{2}\right\},\left\{\theta, \theta_{1}, \theta_{2}\right\}\right]$
For example, to see the surface $\mathbf{z}=\mathrm{r}^{2} \cos (8 \theta)$, for $\mathrm{r} \in[0.5,1]$ and $\theta \in[0,2 \pi]$:
$\operatorname{In}[]:$ RevolutionPlot3D[r^2 Cos[8 theta], $\{r, 0.5,1\},\{$ theta, $0,2 P i\}]$

Out []:

In Mathematica, points in the spherical coordinate system are described by quantities ρ, ϕ, and θ, where ρ is the radial distance in space of the point from the origin;
θ is the vertical angle measured from the positive z-axis; and
ϕ is the horizontal angle measured from the x -axis.
Note that Mathematica uses ϕ and θ for the horizontal and vertical angles, respectively, in spherical coordinates. This is exactly the opposite of the notation used in almost every Calculus book.

To draw the surface $\rho=\mathrm{f}(\theta, \phi)$, where $\theta \in\left[\theta_{0}, \theta_{1}\right]$ and $\phi \in\left[\phi_{0}, \phi_{1}\right]$, you will enter:

$$
\text { SphericalPlot3D[f[} \left.\left.[\theta, \phi],\left\{\theta, \theta_{1}, \theta_{2}\right\},\left\{\phi, \phi_{1}, \phi_{2}\right\}\right]\right]
$$

For example, to see the surface defined by $\rho=\cos (\theta) \cos (4 \theta)$, for $\theta \in\left[0, \frac{\pi}{4}\right]$, and $\phi \in[0,2 \pi]$, use:
In []: SphericalPlot3D[Cos[theta]Cos[4theta], \{theta, 0, Pi/4\}, \{phi,0,2Pi\}]

Out []:

When you use the SphericalPlot3D command, you must enter the interval for the vertical angle theta first, then the interval for the horizontal angle phi. If you do not use this order, the picture will be incorrect.

Plotting Multiple Surfaces The Plot3D command allows you to draw more than one surface above a rectangle $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$ and $\mathrm{y} \in[\mathrm{c}, \mathrm{d}]$ in a single graphic. You use it in the form

$$
\text { Plot3D[\{surface1, surface2, ...\},\{x,a,b\},\{y,c,d\}] }
$$

and you still can attach options just as before. For example, the intersection of the paraboloid $z=x^{2}+y^{2}$ with the plane $z=2 x+5 y$ is a circle. You can see this quite easily with
$\operatorname{In}[]: \quad \operatorname{Plot} 3 D\left[\left\{x^{\wedge} 2+y^{\wedge} 2,2 x+5 y\right\},\{x,-6,6\},\{y,-6,6\}\right]$

Out []:

SphericalPlot3D similarly allows you to plot more than one surface, using the same syntax extension as the Plot3D command uses. For example, we can see a very nice "cut-away" image of the 3 spheres $r=\cos (\theta), r=2 \cos (\theta)$, and $r=3 \cos (\theta)$ by restricting the range of ϕ, to stay between $\frac{\pi}{4}$ and $\frac{7 \pi}{4}$ and looking at them from in front of the x-axis:

In []: SphericalPlot3D[\{Cos[theta], 2Cos[theta], 3Cos[theta] \}, $\{$ theta, $0, \mathrm{Pi} / 2\},\{$ phi, Pi/4,7Pi/4\}, ViewPoint->\{2, 0, 0\}]

Out []:

Finally, although RevolutionPlot3D also allows multiple equations in the same graphic, the syntax is different. You must use one extra layer of curly braces $\{$ and $\}$. For example, in cylindrical coordinates, the equation $z=r$, for $1 \leq r \leq 2$ and $0 \leq \theta \leq 2 \pi$, describes a portion of a cone, also the equations $z=r \pm 1$ are just vertical translations of the cone. Put the three together and you have got three bowls stacked up.
$\operatorname{In}[]: \operatorname{RevolutionPlot3D}[\{\{r\},\{r-1\},\{r+1\}\},\{r, 0,2\},\{$ theta, $0,2 P i\}]$

Out []:

9.5 Changing Coordinate Systems

Changing coordinate systems can involve two very different operations. One is recomputing coordinate values that correspond to the same point. The other is re-expressing a field in terms of new variables. The Wolfram Language provides functions to perform both these operations.

Converting Points Two coordinate systems are related by a mapping that takes coordinate values in the old system and returns coordinate values in the new system. The function CoordinateTransformData returns information about mappings between the coordinate systems. For example, the following converts the point (r, θ) in polar coordinates to the corresponding (x, y) Cartesian coordinates.

```
In[]: CoordinateTransformData["Polar"->"Cartesian","Mapping",{r,0}]
```

Out []: $\quad\{r \cos (\theta), r \sin (\theta)\}$

Conversely, we write

$$
\begin{array}{ll}
\text { In [] : } & \text { CoordinateTransformData["Cartesian"->"Polar","Mapping", }\{\mathrm{x}, \mathrm{y}\} \text {] } \\
\text { Out [] }: & \left\{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}, \tan ^{-1}\left(\frac{\mathrm{y}}{\mathrm{x}}\right)\right\}
\end{array}
$$

To covert a point (ρ, θ, ϕ) in spherical coordinates to the corresponding ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) Cartesian coordinates, and vice versa, we use

```
In[]: CoordinateTransformData["Spherical"->"Cartesian", "Mapping", \(\{\rho, \theta, \phi\}]\)
Out []: \(\quad\{\rho \sin (\theta) \cos (\phi), \rho \sin (\theta) \sin (\phi), \rho \cos (\theta)\}\)
In []: CoordinateTransformData["Cartesian"->"Spherical","Mapping", \(\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}\) ]
Out [ ] : \(\left\{\sqrt{x^{2}+y^{2}+z^{2}}, \tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right), \tan ^{-1}\left(\frac{y}{x}\right)\right\}\)
```

Also, we convert a point ($\mathrm{r}, \theta, \mathrm{z}$) in cylindrical coordinates to the corresponding ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) Cartesian coordinates, and vice versa by writing

```
In[]: CoordinateTransformData["Cylindrical"->"Cartesian","Mapping", \(\{r, \theta, z\}]\)
Out[]: \(\quad\{r \cos (\theta), r \sin (\theta), z\}\)
In[]: CoordinateTransformData["Cartesian"->"Cylindrical","Mapping", \{x,y,z\}]
Out []: \(\left\{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}, \tan ^{-1}\left(\frac{\mathrm{y}}{\mathrm{x}}\right), \mathrm{z}\right\}\)
```

Example 9.1. Convert the point ($1,1,0$) in Cartesian coordinates to the corresponding values in spherical coordinates.

```
In[]: CoordinateTransformData["Cartesian"->"Spherical","Mapping",\{1,1,0\}]
Out [ ]: \(\quad\left\{\sqrt{2}, \frac{\pi}{2}, \frac{\pi}{4}\right\}\)
```

Example 9.2. Convert the point $\left(1, \frac{\pi}{3}, \frac{\pi}{4}\right)$ in spherical coordinates to the corresponding cylindrical coordinates.

In[]: CoordinateTransform["Spherical"->"Cylindrical", \{1, Pi/3,Pi/4\}]
Out []: $\quad\left\{\frac{\sqrt{3}}{2}, \frac{\pi}{4}, \frac{1}{2}\right\}$

Example 9.3. Convert the points $(1,1),(1,-1)$, and $(0,-2)$ from Cartesian coordinates to the corresponding polar coordinates.

```
In[]: CoordinateTransform["Cartesian"->"Polar",\{\{1, 1\},\{1,-1\},\{0,-2\}\}]
Out []: \(\left\{\left\{\sqrt{2}, \frac{\pi}{4}\right\},\left\{\sqrt{2},-\frac{\pi}{4}\right\},\left\{2,-\frac{\pi}{2}\right\}\right\}\)
```

Transforming Fields When transforming fields between two coordinate systems, a field given in terms of variables in the old system is re-expressed in terms of variables in the new system. In addition to the mapping between the systems, several additional steps are needed: solving for the old variables in terms of the new, the substituting in these expressions. All of these steps are performed by the command TransformedField. For example, this converts the scalar field $x^{2}+y^{2}+z^{2}$ from Cartesian (x, y, z) to cylindrical (r, θ, ξ) coordinates.

```
In[]: TransformedField["Cartesian"->"Cylindrical", x^2+y^2+z^2, {x,y,z}->
    {r,0,\xi}] // Simplify
Out[]: 每 + + r
```

The following converts the hyperbola $\mathrm{x}^{2}-\mathrm{y}^{2}$ from Cartesian (x, y) to polar (r, θ) coordinates.

```
In []: TransformedField["Cartesian"->"Polar", \(\left.x^{\wedge} 2-y^{\wedge} 2, ~\{x, y\}->\{r, \theta\}\right] / / S i m p l i f y\)
Out[]: \(\quad r^{2} \cos (2 \theta)\)
```

Example 9.4. In some cases, a surface given in rectangular coordinates will look better if you draw it using cylindrical or spherical coordinates. For example, the surface defined by the equation $z=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$ can be plotted with:
$\operatorname{In}[]: P \operatorname{lot} 3 D\left[\left(x^{\wedge} 2-y^{\wedge} 2\right) /\left(x^{\wedge} 2+y^{\wedge} 2\right)^{\wedge} 2,\{x,-3,3\},\{y,-3,3\}\right]$

Out []:

The picture is choppy especially near the origin. However, if we use cylindrical coordinates, the surface becomes

$$
\begin{aligned}
\operatorname{In}[]: & f=T r a n s f o r m e d F i e l d[" C a r t e s i a n "->" C y l i n d r i c a l ", ~ \\
& \left.\left(x^{\wedge} 2-y^{\wedge} 2\right) /\left(x^{\wedge} 2+y^{\wedge} 2\right)^{\wedge} 2,\{x, y, z\}->\{r, \theta, \xi\}\right] / / \text { Simplify }
\end{aligned} \quad \begin{array}{ll}
\text { Out }[]: & \frac{\cos (2 \theta)}{r^{2}}
\end{array}
$$

Now, we will do the plot.

In[]: RevolutionPlot3D[f,\{r,0.5,3\},\{ $\theta, 0,2 \mathrm{Pi}\}]$

Out []:

9.6 Level Curves and Level Surfaces

In Mathematica, the level curves (contours) of a function $f(x, y)$ are plotted with the ContourPlot command. To see the level curves inside the rectangle $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$ and $\mathrm{y} \in[\mathrm{c}, \mathrm{d}]$, you use the command with this syntax:

$$
\text { ContourPlot }[\mathrm{f}[\mathrm{x}, \mathrm{y}],\{\mathrm{x}, \mathrm{a}, \mathrm{~b}\},\{\mathrm{y}, \mathrm{c}, \mathrm{~d}\}]
$$

For example, here are some level curves of $f(x, y)=x y e^{-x^{2}-y^{2}}$ near the origin:

By default, Mathematica automatically sketches an appropriate number of level curves and colors the areas between these curves. Lighter shades represent higher levels, while darker shades represent lower levels. By moving the mouse over the graphic above, Mathematica will show you (using a tooltip at the cursor) exactly what contour levels have been drawn.

Level Surfaces in Space If $f(x, y, z)$ is a function of three variables defined over a region $x \in\left[x_{0}, x_{1}\right]$, $y \in\left[y_{0}, y_{1}\right]$, and $z \in\left[z_{0}, z_{1}\right]$ then the level surface of f at level c can be seen with the ContourPlot3D command.

ContourPlot3D[function, $\{\mathrm{x}, \mathrm{x} 0, \mathrm{x} 1\},\{\mathrm{y}, \mathrm{y} 0, \mathrm{y} 1\},\{\mathrm{z}, \mathrm{z} 0, \mathrm{z} 1\}$, Contours-> $\{\mathrm{c}\}$]
You can specify more than one level surface to be shown in the same graphic by writing Contours \rightarrow \{the levels\}, where the levels are separated by commas. For example, We can see the level surfaces of $f(x, y, z)=x^{3}-y^{2}+z^{2}$ at the levels of 1 and 10 with the following.

In []: ContourPlot3D $\left[x^{\wedge} 3-y^{\wedge} 2+z^{\wedge} 2,\{x,-2,3\},\{y,-2,2\},\{z,-2,3\}\right.$, Contours $\left.->\{1,10\}\right]$

9.7 Parametric Curves and Surfaces in Space

You use the ParametricPlot3D command to draw a space curve. To see the curve given parametrically as $(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t}), \mathrm{z}(\mathrm{t}))$, for $\mathrm{t} \in[\mathrm{a}, \mathrm{b}]$, type:

ParametricPlot3D[\{x(t),y(t),z(t)\},\{t,a,b\}]

This format is similar to the ParametricPlot command used for plane curves. Here, however, the curve is defined with three parametric functions rather than two. For example, the helix, given parametrically by $(\mathrm{t}, 3 \cos \mathrm{t}, 3 \sin \mathrm{t})$, for $\mathrm{t} \in[0,8 \pi]$, is drawn with:
$\operatorname{In}[]:$ ParametricPlot3D[\{t,3Cos[t],3Sin[t]\}, $\{t, 0,8 \mathrm{Pi}\}]$

Out []:

ParametricPlot3D can also be used to draw a surface in space. If a surface is defined parametrically by $(\mathrm{x}(\mathrm{u}, \mathrm{v}), \mathrm{y}(\mathrm{u}, \mathrm{v}), \mathrm{z}(\mathrm{u}, \mathrm{v}))$ for $\mathrm{u} \in[\mathrm{a}, \mathrm{b}]$ and $\mathrm{v} \in[\mathrm{c}, \mathrm{d}]$, you enter:

$$
\operatorname{ParametricPlot3D}[\{\mathrm{x}(\mathrm{u}, \mathrm{v}), \mathrm{y}(\mathrm{u}, \mathrm{v}), \mathrm{z}(\mathrm{u}, \mathrm{v})\},\{\mathrm{u}, \mathrm{a}, \mathrm{~b}\},\{\mathrm{v}, \mathrm{c}, \mathrm{~d}\}]
$$

For example, to see a portion of the one-sheeted hyperboloid given parametrically by ($\cos u \cosh v$, $\sin u \cosh v, \sinh v)$, for $u \in[0,2 \pi]$ and $v \in[-2,2]$, write:

```
In []: ParametricPlot3D[\{Cos[u]Cosh[v], Sin[u]Cosh[v], Sinh[v]\}, \{u, 0, 2Pi\}, \(\{\mathrm{v},-2,2\}]\)
```


9.8 Visualizing Data

In Mathematica, curly braces are used to represent lists, regardless of the type of elements in the list. Lists can be created several different ways as we have seen before in chapter 4.

It is common to store lists in variables; this allows the lists to be easily referenced in subsequent calculations. For example, by assigning a list to the symbol data, this variable can be used in other calculations or commands where the list is needed.

```
\(\operatorname{In}[]:\) data \(=\{8,2,5,1,4,7,6\}\)
Out[]: \(\{8,2,5,1,4,7,6\}\)
```

Just as the Wolfram Language has many commands available to visualize all types of mathematical functions and surfaces, so too does it have many commands available to visualize lists and datasets. One of the most common commands to visualize data is ListPlot, which displays the data as individual points.

In []: ListPlot[data]

When values jump around, it is usually harder to understand if you do not join them up. ListLinePlot plots a list, joining up values.

In[]: ListLinePlot[data]

Out []:

If you just want to know which numbers appear, you can plot them on a number line.
In []: NumberLinePlot[data]

Making a bar chart can be useful too:
In []: BarChart[data]

So long as the list is not too long, a pie chart can be useful:
In []: PieChart[data]

Out []:

Multiple Datasets While the examples thus far have concentrated on visualizing a single dataset, the visualization commands can also be used to visualize multiple datasets. Multiple datasets can be constructed by placing several different lists into a single "parent" list that encompasses them all. This larger list can be passed to a command like ListPlot to visualize each of the sublists as a separate dataset. The following example shows the use of ListPlot to plot two datasets, which are automatically given different colors to easily tell them apart.

```
\(\operatorname{In}[]: \operatorname{ListPlot}[\{\{3,5,7,9\},\{1,4,9,16,25\}\}]\)
```



```
\(\operatorname{In}[]: \operatorname{ListLinePlot}[\{\{3,5,7,9\},\{1,4,9,16,25\}\}]\)
```


The following example depicts a use of the Show command to combine a data visualization from ListPlot and a function visualization from Plot.

Note that we add an option to ListPlot called PlotStyle, which allows us to color the data points in red and change their size to large, in order to make them stand out.

Many measurements are commonly represented as two-dimensional datasets. The data visualization commands in the Wolfram Language are designed to work with both one- and multidimensional data. When a command like ListPlot is given a one-dimensional list, it is assumed that the list contains y values that correspond to x values 1,2 , and so on. ListPlot also accepts a list of (x, y) pairs instead of single height values for y coordinates.

In []: ListPlot[Table[\{2i, Prime[i]\}, \{i,8\}]]

Visualizing lists or datasets in three dimensions is just as easy as visualizing them in one or two dimensions. Many of the plotting commands shown thus far have 3D equivalents, like ListPlot and ListPlot3D. The ListPlot3D command visualizes a 3D surface based on the values from that dataset, and this 3D surface has the same interactivity (rotation, panning, zooming) as other objects.

In []: ListPlot3D@Table[Cos[i] Cos[j], $\{\mathrm{i}, 2,8\},\{j,-3,1\}]$

Out []:

To visualize only the discrete data points and not a connecting mesh between the points, ListPointPlot3D can be used.

In []: ListPointPlot3D@Table[Cos[i] Cos[j], $\{\mathrm{i}, 2,8\},\{j,-3,1\}]$

Out []:

Visualize a Matrix Vectors and matrices have special visualization commands. ArrayPlot draws a representation of an array, coloring squares that represent larger values with darker colors. The following is the ArrayPlot of the 8×8 matrix of the first 64 consecutive prime numbers.

In []: ArrayPlot[Partition[Prime[Range[64]], 8]]

Out []:

MatrixPlot follows a similar logic, where the position of a value in a matrix determines the coloration of that position in the plot, with negative values shown in cool tones, like blue, and positive values shown in warm tones, like orange. The higher the magnitude of a value, the more intense its corresponding color is for that position.

In[]: MatrixPlot $[\{\{-10,-5,-1\},\{2,4,6\},\{20,30,40\}\}]$

Out []:

Shape Matrices Mathematica provides certain shapes of matrices as follows.

1. DiskMatrix[r] gives a matrix whose elements are 1 in a disk-shaped region of radius r, and are otherwise 0 .

In []: ArrayPlot[DiskMatrix[7], Mesh -> All]

Out []:

2. BoxMatrix [r] gives a $(2 r+1) \times(2 r+1)$ matrix of 1 's.

In []: ArrayPlot[BoxMatrix[7], Mesh \rightarrow All]

3. CrossMatrix[r] gives a matrix whose elements are 1 in a centered cross-shaped region that extends r positions along each index direction, and are 0 otherwise.

In[]: ArrayPlot[CrossMatrix[7], Mesh -> All]

Out []:

4. DiamondMatrix [r] gives a matrix whose elements are 1 in a diamond-shaped region that extends r index positions to each side, and are 0 otherwise.

In []: ArrayPlot[DiamondMatrix[7], Mesh -> All]

Out []:

9.9 Advanced Graphics

In addition to using commands such as Plot and ParametricPlot to create 2D pictures, we can ask Mathematica to directly draw simple objects such as points, lines, circles, and rectangles. These objects are called graphics primitives, and they are the lowest-level commands used to produce every 2D Mathematica picture. To work with graphics primitives, you have to first define them with the Graphics command:

Graphics[graphics primitive]
or, to group several graphic primitives together, use
Graphics[\{graphics primitive1, graphics primitive2, ...\}]
3D graphics primitives are also available in Mathematica. You use the Graphics3D command both to define and show them. Some of the graphics primitives we have used often are the following.

1. Point $[\mathrm{p}]$ is a graphics and geometry primitive that represents a point at p .

In []: Graphics [Point [\{-2, 1\}]]

Out []:

In []: Graphics[Point[Table[\{t,Sin[t]\}, $\{t, 0,2 \mathrm{Pi}, 2 \mathrm{Pi} / 10\}]]$

$\operatorname{In}[]: \quad \operatorname{pts}=T a b l e[\{\mathrm{t}, \operatorname{Sin}[\mathrm{t}], \operatorname{Cos}[\mathrm{t}]\},\{\mathrm{t}, 0,2 \mathrm{Pi}, 2 \mathrm{Pi} / 10\}] ;$
In[]: Graphics3D[Point[pts]]

Out []:

2. Line $[\{p 1, p 2, \ldots\}]$ represents the line segments joining a sequence for points p_{i}.

In[]: Graphics[\{Thick, $\operatorname{Line[\{ \{ 1,0\} ,\{ 2,1\} ,\{ 3,0\} ,\{ 4,1\} \}]\}]}$

Out []:

In []: line=Line[\{\{1, $1,-1\},\{2,2,1\},\{3,3,-1\},\{4,4,1\}\}]$;
In[]: Graphics3D[\{Thick,Dashed,line\}]

Out []:

3. InfiniteLine $[\{\mathrm{p} 1, \mathrm{p} 2\}]$ represents the infinite straight line passing through the points p_{1} and p_{2}.

In []: Graphics[InfiniteLine[\{0,0\},\{1, 1\}], Frame->True]

Out []:

In []: Graphics3D[InfiniteLine[\{0, 0, 0\}, $\{1,2,3\}]$]

Out []:

In []: lines=Table[InfiniteLine[\{0,y\},\{1,1\}],\{y,5\}];
In []: Graphics[lines, PlotRange->\{\{-6,6\},\{0,6\}\}]

Out []:

Example 9.5. Find the point of intersection for the two lines ℓ_{1} that passes through the point $(0,0)$ in the direction of the vector $(1,1)$, and the line ℓ_{2} that passes through the points $(0,1),(1,0)$.

In [] $: ~$	line1 $=\operatorname{InfiniteLine[\{ 0,0\} ,~}\{1,1\}] ;$
In[]:	line2 $=\operatorname{InfiniteLine[0,~1,~1,~} 0] ;$

In[]: line2 = InfiniteLine[0, 1, 1, 0];
In []: sol=Solve[Element[\{x,y\},line1]\&\& Element [\{x,y\},line2], $\{\mathrm{x}, \mathrm{y}\}$
Out []: $\left\{\left\{x \rightarrow \frac{1}{2}, y \rightarrow \frac{1}{2}\right\}\right\}$
In []: Graphics[\{\{Thick,line1,line2\}, \{PointSize[0.06], Red, Point $[\{x, y\} / . s o l]\}\}$, Axes->True, ImageSize->Small]

Out []:

4. $\operatorname{Arrow}[\{\mathrm{pt} 1, \mathrm{pt} 2\}]$ is a graphics primitive that represents an arrow from pt_{1} to pt_{2}.
$\operatorname{In}[]: \operatorname{Graphics}[\operatorname{Arrow}[\{\{1,0\},\{2,1\},\{3,0\},\{4,1\}\}]]$

Out []:

In []: Plot[Sin[x], $\{x, 0,2 P i\}, E p i l o g->\{\operatorname{Arrow}[\{\{3 P i / 2,1 / 2\},\{\operatorname{Pi}, 0\}\}]$, Text["Zero", $\{3 \mathrm{Pi} / 2,1 / 2\},\{-1,-1\}]\}]$

Out []:

5. Triangle $[\{\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3\}]$ represents a filled triangle with corner points $\mathrm{p}_{1}, \mathrm{p}_{2}$, and p_{3}.

In[]: Graphics[Triangle[]]

Out []:

$\operatorname{In}[]: \operatorname{Graphics3D}[\operatorname{Triangle}[\{\{0,0,0\},\{1,0,0\},\{0,1,1\}\}]]$

Out []:

Example 9.6. To define an equilateral triangle by side length s , we use the command SSSTriangle [a, b, c] which returns a filled triangle with sides of lengths a, b, and c.

```
In[]: EquilateralTriangle[s_] := SSSTriangle[s,s,s]
In[]: EquilateralTriangle[2]
Out[]: Triangle[{{0,0}, {2,0}, {1, \sqrt{}{3}}}]
In[]: Graphics@EquilateralTriangle[2]
Out[]:
```


Example 9.7. To define an isosceles triangle by side length s that adjacent to both equals angles α, we may use either the command IsoscelesTriangle [a,s,b] which returns a filled triangle with angles a and b and side length c, and c is adjacent to both angles, or we use the command SASTriangle[s1,a,s2] which returns a filled triangle with sides of length $s 1$ and s1 and angle a between them.

6. Rectangle $[\{x \min , y m i n\},\{x \max , y m a x\}]$ represents an axis-aligned filled rectangle from $\{x m i n, y m i n\}$ to $\{x \max , y m a x\}$.

In []: Graphics[Rectangle[]] (* this command defines a unit square *)

In []: Graphics[Rectangle[\{2,1\},\{4,5\}],Axes->True,AxesOrigin->\{0,0\}]

7. RegularPolygon [n] gives the regular polygon with n vertices equally spaced around the unit circle. RegularPolygon $[n, r]$ gives the regular polygon of radius r.

In []: Table[Graphics [RegularPolygon[k]],\{k,3,8\}]

Out []:

8. $\operatorname{Circle}[\{\mathrm{x}, \mathrm{y}\}, \mathrm{r}]$ represents a circle of radius r centered at $\{\mathrm{x}, \mathrm{y}\}$. The command Circle $[\{\mathrm{x}, \mathrm{y}\},\{\mathrm{rx}, \mathrm{ry}\}]$ gives an axis-aligned ellipse with semi-axes lengths rx and ry . While Circle $[\{\mathrm{x}, \mathrm{y}\}, \ldots,\{\theta 1, \theta 2\}]$ gives a circular or ellipse arc from angle $\theta 1$ to $\theta 2$.

In []: Graphics[Circle[]] (* Unit Circle *)

Out []:

In []: Graphics[Circle[\{0,0\},1,\{Pi/6,3Pi/4\}]] (* Circular Arc *)

Out []:

In []: Graphics[Circle[\{0,0\}, $\{3,4\}]$] (* An Ellipse *)

Out []:

In[]: Graphics[Table[Circle[\{i,j\},1/2], $\{i, 7\},\{j, 5\}]$]

Out []:

9. $\operatorname{Disk}[\{\mathrm{x}, \mathrm{y}\}, \mathrm{r}]$ represents a disk of radius r centered at $\{\mathrm{x}, \mathrm{y}\}$.

In []: Graphics[Disk[]] (* Unit Disk *)

Out []:

In[]: Graphics[\{Orange,Disk[\{0,0\},1,\{Pi/4,3Pi/4\}]\}] (* Disk Sector *)

Out []:

In []: Graphics[\{Gray, Disk[\{0,0\},\{3,4\}]\}] (* An Elliptical Disk *)

Out []:

10. InfinitePlane $[\{\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3\}]$ represents the plane passing through the points $\mathrm{p} 1, \mathrm{p} 2$, and p 3 . InfinitePlane $[\mathrm{p},\{\mathrm{v} 1, \mathrm{v} 2\}]$ represents the plane passing through the point p in the directions v 1 and v 2 .

To represent a plane through the points $(1,0,0),(1,1,1)$, and $(0,0,1)$
In []: Graphics3D[InfinitePlane[\{\{1, 0, 0\}, $\{1,1,1\},\{0,0,1\}\}]$]

Out []:

To define the plane passing through the point ($1,0,0$) in the directions ($0,1,1$) and ($1,0,1$) $\operatorname{In}[]: \operatorname{Graphics3D}[\operatorname{InfinitePlane}[\{1,0,0\},\{\{0,1,1\},\{-1,0,1\}\}]]\}]$

Out []:

11. Ball $[p, r]$ represents a ball of radius r centered at the point p.

A unit ball at the origin:
In []: Graphics3D[Ball[\{0,0,0\}]]

Out []:

12. Cylinder $[\{\{\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1\},\{\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2\}\}, \mathrm{r}]$ represents a cylinder of radius r around the line from ($\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1$) to ($\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2$).

Cylinder from the origin to $\{1,1,1\}$ with radius $\frac{1}{2}$.
In []: Graphics3D[Cylinder $[\{\{0,0,0\},\{1,1,1\}\}, 1 / 2]]$

Out []:

13. Cone $[\{\{\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1\},\{\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2\}\}, \mathrm{r}]$ represents a cone with a base of radius r centered at ($\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1$) and a tip at $(\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2)$.

Cone from the origin to $\{1,1,1\}$ with radius $\frac{1}{2}$ at its base
In[]: Graphics3D[Cone[\{\{0, 0, 0\}, $\{1,1,1\}\}, 1 / 2]$]

Out []:

14. Cuboid [pmin, pmax] represents an axis-aligned filled cuboid with lower corner pmin and upper corner pmax.

```
In[]: Graphics3D[Cuboid[{-2,0,1},{1,3,3}],Axes->True,AxesOrigin->{0,0,0}]
```

Out []:

9.10 Region Integrals Measures

The Wolfram Language supports a broad range of standard properties and measures for geometric regions, including integral measures such as length, area, volume, and centroid.

Arc Length The command ArcLength[reg] gives the length of the one dimensional region reg. For example, the arc length of the function $f(x)=\frac{x^{3}}{6}-\frac{1}{2 x}$ on the interval $[1,2]$ is
$\operatorname{In}[]:$ ArcLength $\left[x^{\wedge} 3 / 6+1 /(2 x),\{x, 1,2\}\right]$
Out []: $\frac{17}{12}$
The length can be computed using the polar representation of $r(\theta)=2-2 \cos \theta$ on $[0,2 \pi]$ as follows.
In []: ArcLength[\{2-2Cos[theta], theta\},\{theta, 0, 2Pi\}, "Polar"]
Out[]: 16
Length of one revolution of the helix given parametrically is

```
In[]: ArcLength[{Cos[t],Sin[t],t},{t,0,2Pi}]
```

Out[]: $2 \sqrt{2} \pi$
The length of the line connecting the points $(0,0),(1,1)$, and $(3,-1)$ is
In []: ArcLength[Line[\{\{0, 0\}, $\{1,1\},\{3,-1\}\}]]$
Out[]: $3 \sqrt{2}$
The length of a circle with radius r is

```
In[]: ArcLength[Circle[{x,y},r]]
Out[]: 2\pir
```

The length of an ellipse is
In []: N@ArcLength[Circle[\{0,0\},\{2,3\}]]
Out[]: 15.8654
The arc length of a circle intersected with a triangle:

```
In[]: R1 = Circle[];
In[]: R2 = Triangle[{{-3/2,0},{3/2,0},{0,11/10}}];
In[]: R3 = RegionIntersection[R1,R2];
```

Out []:

In []: ArcLength [R3]
Out []: $\quad 2\left(\sin ^{-1}\left(\frac{3}{692}(121-5 \sqrt{295})\right)+\cos ^{-1}\left(\frac{3}{692}(5 \sqrt{295}+121)\right)\right)$
The perimeter of the triangle whose two of its angles are $\frac{\pi}{6}$ and $\frac{\pi}{3}$, and the length of the side adjacent to both angles is of length 2 , is

In[]: ArcLength[RegionBoundary[ASATriangle[Pi/6,2,Pi/3]]]]
Out []: $\quad \sqrt{3}+3$
where the command RegionBoundary represents the boundary of the region reg.

Area The command Area[reg] gives the area of the two dimensional region reg. For example, the area of the disk with radius r is

```
In []: Area[Disk[\{x,y\}, r]]
Out[]: \(\pi r^{2}\)
```

The surface area of a sphere (ball) with radius r is

```
In[]: Area[RegionBoundary[Ball[{x,y,z},r]]]
In[]: Area[Sphere[{x,y,z},r]]
Out[]: 4\pir}\mp@subsup{}{}{2
```

The area of an annulus with inner radius 1 and outer radius 2 equals

```
\(\operatorname{In}[]: \operatorname{Area}[\{\mathrm{r} \operatorname{Sin}[\) theta],r Cos[theta] \(\},\{r, 1,2\},\{\) theta, \(0,2 \mathrm{Pi}\}]\)
```

Out[]: 3π

The area of the triangle whose vertices at the points $\left(-\frac{1}{2},-1\right),(1,2)$, and $(3,0)$ is

```
In[]: Area[Triangle[{{-1/2,-1},{1,2},{3,0}}]]
Out[]: \frac{9}{2}
```

The area of a triangle with sides of length a, b, and c is
In []: Area[SSSTriangle[a, b, c]]
Out []: $\quad \frac{1}{4} \sqrt{|(a+b-c)(a-b+c)(-a+b+c)(a+b+c)|}$
The area of an ellipse centered at $\left(c_{x}, c_{y}\right)$ is
$\operatorname{In}[]: \quad \operatorname{Area}[\operatorname{Disk}[\{c x, c y\},\{a, b\}]]$
Out[]: ab π

Volume The command Volume [reg] gives the volume of the three dimensional region reg. For example, the volume of a ball in 3D of radius r is

$$
\begin{aligned}
\operatorname{In}[]: & \text { Volume }[\operatorname{Ball}[\{a, b, c\}, r]] \\
\operatorname{Out}[]: & \frac{4 \pi r^{3}}{3}
\end{aligned}
$$

The volume and the surface area of a cone of height h and radius r of its circular base are

```
In []: PowerExpand@Volume[Cone[\{\{0,0,0\},\{0,0,h\}\},r]]
Out[]: \(\frac{1}{3} \pi \mathrm{hr}^{2}\)
In []: Area[RegionBoundary[Cone[\{\{0, 0, 0\}, \(\{0,0, h\}\}, r]]\) ]
Out []: \(\quad \pi r\left(\sqrt{h^{2}+r^{2}}+r\right)\)
```

Centroid The centroid or geometric center of a plane figure is the arithmetic mean ("average") position of all the points in the shape. RegionCentroid[reg] gives the centroid of the region reg. For example, the centroid of the disk with center (a, b) and radius r is

```
In[]: RegionCentroid[Disk[{a,b},r]]
```

Out[]: $\{\mathrm{a}, \mathrm{b}\}$

The centroid of the rectangle is
In[]: RegionCentroid[Rectangle[\{a,b\},\{c,d\}]]
Out []: $\left\{\frac{a+c}{2}, \frac{b+d}{2}\right\}$

9.11 Graphs and Networks

A graph is a way of showing connections between things - say, how web pages are linked, or how people form a social network. Let us start with a very simple graph, in which 1 connects to 2 , 2 to 3 , and 3 to 4 . Each of the connections is represented by \rightarrow (typed as $->$).

In []: Graph $[\{1->2,2->3,3->4\}]$

```
Out[]: 0}\longrightarrow0\longrightarrow
```

Automatically label all the "vertices":

```
In[]: Graph[{1->2,2->3,3->4},VertexLabels->All]
Out[]: 0. + >0' 2
```

Let us add one more connection: to connect 4 to 1 . Now we have a loop.
In []: Graph[\{1->2,2->3,3->4,4->1\},VertexLabels->All]

Out []:

Add two more connections, including one connecting 2 right back to 2 :
In []: Graph[\{1->2,2->3,3->4,4->1,3->1,2->2\},VertexLabels->All]

Out []:

As we add connections, the Wolfram Language chooses to place the vertices or nodes of the graph differently. All that really matters for the meaning, however, is how the vertices are connected. And if you do not specify otherwise, the Wolfram Language will try to lay the graph out so it is as untangled and easy to understand as possible.

You can do computations on the graph, say finding the shortest path that gets from 4 to 2, always following the arrows.

$$
\begin{aligned}
\operatorname{In}[]: & \text { FindShortestPath }[\operatorname{Graph}[\{1->2,2->3,3->4,4->1,3->1,2->2\}], 4,2] \\
\text { Out }[]: & \{4,1,2\}
\end{aligned}
$$

Now let us make another graph. This time let us have 3 nodes, and let us have a connection between every one of them. Start by making an array of all possible connections between 3 objects:

$$
\begin{aligned}
\text { In [] }: & \text { Table[i->j, }\{\mathrm{i}, 3\},\{\mathrm{j}, 3\}] \\
\operatorname{Out}[]: & \{\{1 \rightarrow 1,1 \rightarrow 2,1 \rightarrow 3\},\{2 \rightarrow 1,2 \rightarrow 2,2 \rightarrow 3\},\{3 \rightarrow 1,3 \rightarrow 2,3 \rightarrow 3\}\}
\end{aligned}
$$

The result here is a list of lists. But what Graph needs is just a single list of connections. We can get that by using Flatten to "flatten" out the sublists.

$$
\begin{aligned}
\operatorname{In}[]: & \text { Flatten[Table[i->j,\{i,3\},\{j,3\}]] } \\
\operatorname{Out}[]: & \{1 \rightarrow 1,1 \rightarrow 2,1 \rightarrow 3,2 \rightarrow 1,2 \rightarrow 2,2 \rightarrow 3,3 \rightarrow 1,3 \rightarrow 2,3 \rightarrow 3\}
\end{aligned}
$$

Now, show the graph of these connections:
In[]: Graph[Flatten[Table[i->j,\{i,3\},\{j,3\}]],VertexLabels->All]

Out []:

The following generates the completely connected graph with 6 nodes:

In[]: Graph[Flatten[Table[i->j,\{i,6\},\{j,6\}]]]

Sometimes the "direction" of a connection does not matter, so we can drop the arrows.
In []: UndirectedGraph[Flatten[Table[i->j,\{i,6\},\{j,6\}]]]

Out []:

9.12 Exercises

1. The standard normal curve used in probability and statistics is defined by the function $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$. Sketch the graph of f for $x \in[-3,3]$.
2. The graphs of a function and its inverse are symmetric with respect to the line $y=x$. Plot the functions $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}, x \in[0,2]$, and its inverse $\mathrm{f}^{-1}(\mathrm{x})=\sqrt{\mathrm{x}}, \mathrm{x} \in[0,4]$, and the line $\mathrm{y}=\mathrm{x}$ and observe the symmetry.
3. Sketch the graphs of $y=x^{2}, y=-x^{2}$, and $y=x^{2} \sin (10 x), x \in[-2 \pi, 2 \pi]$, on a single set of axes enclosed by a frame.
4. Sketch the parabola $y=x^{2}-9$ and a circle of radius 3 centered at the origin.
5. The curve traced by a point on a circle as the circle rolls along a straight line is called a cycloid and has parametric equations $x=r(\theta-\sin \theta)$ and $x=r(1-\cos \theta)$ where r represents the radius of the circle. Plot the cycloid formed as a circle of radius 1 makes four complete revolutions.
6. The polar graph $r=\theta$ is called the Spiral of Archimedes. Sketch the graph for $\theta \in[0,10 \pi]$.
7. Sketch the graph defined by the equation $y^{2}=x^{3}(2-x)$ where $x \in[0,2]$ and $y \in[-2,2]$.
8. Plot the first 50 prime numbers.
9. Make a number line plot of the first 20 elements of the sequence given by the rule $\frac{1}{\mathrm{n}}$.
10. Plot the functions $y=x^{2}$ and $y=8-x^{2}$ and color the region enclosed between them using the plot option Filling.
11. Plot the graph of the function $\mathrm{e}^{-\mathrm{x}^{2}-\mathrm{y}^{2}}$ above the rectangle $[-2,2] \times[-2,2]$.
12. Graph the paraboloid $z=x^{2}+y^{2}$ with the plane $z+y=12$ above the rectangle $[-5,5] \times[-5,5]$. Do not draw axes or a surrounding box.
13. Sketch the space curve defined by the parametric equations

$$
\begin{aligned}
& \mathrm{x}(\mathrm{t})=(4+\sin 20 \mathrm{t}) \cos \mathrm{t} \\
& \mathrm{y}(\mathrm{t})=(4+\sin 20 \mathrm{t}) \sin \mathrm{t} \\
& \mathrm{z}(\mathrm{t})=\cos 20 \mathrm{t}
\end{aligned}
$$

where $t \in[0,2 \pi]$. This curve is called a toroidal spiral since it lies on the surface of a torus.
14. Draw the "ice cream cone" formed by the cone $z=3 \sqrt{x^{2}+y^{2}}$ and the upper half of the sphere $x^{2}+y^{2}+(z-9)^{2}=9$. Use cylindrical coordinates.
15. Sketch the graph of the surface $\rho=1+\sin 4 \theta \sin \phi$ given in spherical coordinates where $\theta \in[0,2 \pi]$ and $\phi \in[0, \pi]$.
16. Draw a contour plot of $f(x, y)=\sin x+\sin y$ on the square $x, y \in[-4 \pi, 4 \pi]$.
17. Let $f(x, y, z)=5 x^{2}+2 y^{2}+z^{2}$. Draw the level surfaces $f(x, y, z)=k$ for $k=1,4,9,16$, and 25 . Sketch the surfaces only for $\mathrm{y} \geq 0$ so that all the surfaces will be visible.
18. A triangle has angles $\frac{\pi}{6}$ and $\frac{\pi}{4}$, and a side of length 1 is adjacent to only one of the angles. Find the perimeter of this triangle, then find its centroid and display the position of the centroid inside the triangle.
19. Make a graph with 4 nodes in which every node is connected.
20. For the graph $\{1 \rightarrow 2,2 \rightarrow 3,3 \rightarrow 4,4 \rightarrow 1,3 \rightarrow 1,2 \rightarrow 2\}$, make a grid giving the shortest paths between every pair of nodes, with the start node as row and end node as column.

References

1. Getting Started with Mathematica,

C-K. Cheung, Gerard E. Keough, Robert H. Gross, Charles Landraitis, Wiley; 3rd edition (March 16, 2009).
2. Mathematica: A Problem-Centered Approach,

Roozbeh Hazrat,
Springer; 2nd ed. 2015 edition (January 12, 2016).
3. Programming with Mathematica: An Introduction, Paul Wellin,
Cambridge University Press; 1st edition (February 25, 2013).
4. Hands-On Start to Wolfram Mathematica,

Cliff Hastings, Kelvin Mischo, Michael Morrison,
Wolfram Media, Inc. (September 15, 2015)
5. An Elementary Introduction to the Wolfram Language,

Stephen Wolfram,
Wolfram Media, Inc. (December 11, 2015).
6. Mathematica by Example,

Martha L. Abell, James P. Braselton,
Academic Press; 4th edition (September 23, 2008).
7. Schaum's Outline of Mathematica,

Eugene Don,
McGraw-Hill Education; 2nd edition (May 19, 2009)
8. The Student's Introduction to MATHEMATICA,

Bruce F. Torrence, Eve A. Torrence,
Cambridge University Press; 2nd edition (February 2, 2009)

Index

Add Column, 76
Add Row, 76
Algebraics, 30
Alignment, 96
AllTrue, 43
And, 29
Apart, 47
Apply, 149
ArcLength, 126
Area, 128
ArrayPlot, 116
Array, 24, 74
Arrow, 120
AspectRatio, 95
Assumptions, 47
Automatic, 95
AxesLabel, 102, 103
Ball, 125
BarChart, 113
Basic Commands, 76
Basic Math Assistant, 76
BetaDistribution, 145
BinomialDistribution, 145
Binomial, 41
Block, 158
BooleanTable, 29
Booleans, 30
BoxMatrix, 117
BoxRatios, 103
CDF, 145
Ceiling, 38
CharacteristicPolynomial, 83
ChiDistribution, 145
ChiSquareDistribution, 145
Circle, 123
Clear[Global' *], 18
Clear, 18
CoefficientArrays, 84
CoefficientList, 50
Coefficient, 50
Complement, 31
Complexes, 30
CompositeQ, 34
Conditioned, 146
Cone, 125
ConstantArray, 78
ContourPlot3D, 111
ContourPlot, 100
CoordinateTransformData, 107
CoprimeQ, 37
CountRoots, 51
Count, 27
CreatePalette, 9
CrossMatrix, 117
Cross, 75
CubeRoot, 12
Cuboid, 126
Curl, 140
Cylinder, 125
CylindricalDecomposition, 138
DSolveValue, 90
DSolve, 89, 141
Dashing, 97
Default, 157
DeleteDuplicates, 31
Det, 81
DiagonalMatrix, 79

DiamondMatrix, 117
DigitCount, 36
Direction, 59
DiscreteLimit, 68
DisjointQ, 32
DiskMatrix, 116
Disk, 123
Distributed, 146
Dividers, 96
Divisible, 37
Divisors, 35
Div, 140
Dot, 75, 80
Dt, 62
D, 60, 135
Eigenvalues, 83
Eigenvectors, 83
Element, 30
Equivalent, 33
Evaluate, 147
EvenQ, 39
Exists, 32
Expand, 45
Expectation, 146
ExponentialDistribution, 145
Extension, 45
Factor, 45
False, 29
Fibonacci, 38
Filling, 132
FindInstance, 57
FindRoot, 54
FindSequenceFunction, 68
FindShortestPath, 130
First, 27
Fit, 146
Flatten, 131
Floor, 38
ForAll, 32
FrameLabel, 102
FromDigits, 39
FullForm, 149
FullSimplify, 32, 49
FunctionDomain, 58
FunctionRange, 58
GCD, 37
GeometricMean, 144
GoldenRatio, 98
Grad, 135
GraphicsGrid, 96
GraphicsRow, 96
Graphics, 117
Graph, 129
HarmonicMean, 144
IdentityMatrix, 79
If, 77, 156
Implies, 33
InfiniteLine, 119
InfinitePlane, 124
IntegerDigits, 39
IntegerExponent, 35
IntegerLength, 36
IntegerPartitions, 42
IntegerReverse, 39
Integers, 30
Integrate, 63, 137
InterpolatingFunction, 92

InterpolatingPolynomial, 147
Intersection, 31
InverseCDF, 145
InverseLaplaceTransform, 92
Inverse, 81
IsoscelesTriangle, 121
Join, 85
LCM, 37
LaplaceTransform, 92
Last, 27
Length, 26
Limit, 58
LinearSolve, 83
Line, 118
ListLinePlot, 113
ListPlot3D, 115
ListPlot, 112
ListPointPlot3D, 115
$\log 10[\mathrm{x}], 13$
Log2[x], 13
Mapping, 108
Map, 26, 150
MatchQ, 152
MatrixForm, 76
MatrixPlot, 116
MatrixPower, 81
MatrixRank, 82
Maximize, 63, 136
Max, 27
MeanDeviation, 144
Mean, 144
Median, 144
MersennePrimeExponentQ, 44
MersennePrimeExponent, 44
Mesh, 103
MinMax, 27
Minimize, 63, 136
Min, 27
Mod, 36
NDSolve, 91
NIntegrate, 65, 139
NSolve, 54
NSum, 69
N [expr, n], 13
Negative, 155
NestList, 151
NestWhileList, 151
Nest, 151
NextPrime, 35
NonNegative, 155
NormalDistribution, 145
Normalize, 87
Normal, 71, 84
Norm, 75
NullSpace, 82
Null, 156
NumberLinePlot, 113
N, 13
Or, 29
PDF, 145
PalindromeQ, 43
ParametricPlot3D, 111
ParametricPlot, 97
Partition, 77
Part, 24
PerfectNumberQ, 42
PerfectNumber, 42
PieChart, 113
Plot3D, 102
PlotLabel, 102

PlotRange, 94
PlotStyle, 96, 114
Plot, 94
Plus, 149
Point, 118
PoissonDistribution, 145
PolarPlot, 99
Positive, 155
PowersRepresentations, 57
PrimePi, 35
PrimeQ, 34
Primes, 30
Prime, 34
Probability, 145
Product, 71
Projection, 88
QuotientRemainder, 36
Quotient, 36
RSolveValue, 68
Range, 23
Rationals, 30
Reals, 30
Rectangle, 122
RecurrenceTable, 68
RecursionLimit, 158
Reduce, 55
RegionBoundary, 127
RegionCentroid, 129
RegularPolygon, 122
Reverse, 26
RevolutionPlot3D, 105
Root, 54
Round, 38
RowReduce, 85
SASTriangle, 121
SSSTriangle, 121
Select, 39
Series, 71
Show, 95
Simplify, 46
Solve, 51
Sort, 27
SphericalPlot3D, 105
StandardDeviation, 144
StudentTDistribution, 145
SubsetQ, 31
Subsets, 31
SumConvergence, 70
Sum, 69
Surd [x, n], 13
Table, 23
TautologyQ, 30
Thickness, 97
Ticks, 101
Times, 149
Together, 47
Total, 27
TransformedField, 109
Transpose, 81
Triangle, 120
TrigExpand, 48
TrigFactor, 48
TrigReduce, 48
True, 29
$\mathrm{Tr}, 82$
UniformDistribution, 145
Union, 31
Variance, 144
VectorAngle, 76
VectorQ, 74

VertexLabels, 129
ViewPoint, 104
Volume, 129
abort evaluation, 7
absolute value, 11
addition, 10
addition of fractions, 45
alternating series, 70
analytic solutions of ODEs, 89
angle of vectors, 75
annulus, 128
anonymous functions, 21
antiderivative, 63
arbitrary constant, 63, 89
arc length, 126
area, 126
arithmetic mean, 129
arrow, 120
arrow symbol, 20
aspect ratio, 94
augmented matrix, 84
ball, 125
bar chart, 113
base-10 logarithm, 13
base-2 logarithm, 13
basic arithmetic, 10
basic commands, 9
basic math assistant, 8
binomial coefficient, 41
boolean expressions, 29
boundary conditions, 142
boundary of a region, 127
boundary value problem, 90
built-in functions, 11
calculator, 10
calculus, 58
Cartesian coordinates, 107
Cauchy-Euler ODE, 90
Cayley-Hamilton theorem, 88
cell menu, 7
centroid, 126
characteristic polynomial, 82
circles, 117
Collatz function, 156
collection of terms, 45
column vector, 74
combined graphic, 96
comment, 13
complement, 31
composite number, 34
conditional function, 77
conditional probability, 146
cone, 107, 125
consistent, 84
constant matrix, 78
contradiction, 33
converge, 68
coordinate systems, 107
coprime, 37
critical numbers, 66
cross product, 75
cross-shaped region, 117
cube root, 12
cumulative distribution function, 145
curl, 140
curly braces, 7
cyclic number, 41
cycloid, 132
cylinder, 125
cylindrical coordinates, 105
decimal point, 10
default values, 157
definite integral, 64
delete all output, 7
derivative, 60
descriptive statistics, 144
determinant, 81
diagonal matrix, 78
diagonalizable matrix, 88
diamond-shaped region, 117
different values, 29
direction, 131
directional derivative, 136
disjoint sets, 32
disk sector, 124
disk-shaped region, 116
diverge, 68
divergence of vector field, 140
divergent series, 69
dividend, 36
division, 10
divisor, 36
document center, 14
domains, 30
dot product, 75
double integrals, 137
Dudeney number, 42
duplication, 31
eigenvalue problem, 82
eigenvalues, 82
eigenvectors, 82
elementary row operations, 84
ellipse, 123
elliptical disk, 124
equation solving, 51
equilateral triangle, 121
Euclidean division, 36
evaluation menu, 7
expected value, 146
exponential, 11
factorial, 29
Fibonacci Sequence, 38
finding roots, 51
flatten, 131
framed picture, 102
front end, 5
function domain, 58
function range, 58
functions of several variables, 19
functions producing lists, 23
Fundamental Theorem of Calculus, 64
G. H. Hardy, 57

Gaussian elimination, 84
general term, 68
geometric center, 129
geometric series, 69
Goldbach partition, 43
Goldbach's conjecture, 43
gradient, 135
graph, 129
graph of a function, 94
graphics primitives, 117
greater than, 29
greatest common divisor, 37
happy number, 152, 158
harmonic function, 143
Harshad number, 40
head of expression, 149
heat equation, 142
helix, 126
help menu, 14
Heron's formula, 19
higher-level operations, 10
higher-order derivatives, 60, 135
higher-order implicit derivative, 62
highest power, 35
Hilbert matrix, 87
homogeneous ODE, 90
horizontal angle measured, 105
horizontal radial distance, 105
horizontal range, 94
hyperbolic functions, 11
hyperboloid, 112
ice cream cone, 133
identity matrix, 78
immediate assignment, 16
implicit differentiation, 62
implicit equation plot, 100
inconsistent, 84
inequalities, 56
infinite sum, 69
infinity, 11
infix, 14
initial conditions, 142
initial value problem, 90
input, 6
integer factorization, 35
integer partition, 42
integration, 63
integration by parts, 63
interpolation, 147
intersection, 31
interval of convergence, 70
inverse hyperbolic, 11
inverse trigonometric, 11
invertible, 81
isosceles triangle, 121
iterated integral, 137
iterated triple integral, 139
kernel, 5
labels, 102
Laplace transform, 92
Laplace's equation, 143
leading coefficients, 84
least common multiple, 37
least-square fit, 147
left-hand limit, 59
length, 126
less than, 29
level curves, 110
level surfaces, 110
limits, 58, 134
line integrals, 140
linear systems, 53, 83
lines, 117
list, 23
listable functions, 26
logarithm to base a, 11
logic, 29
lower-triangular matrix, 78
mathematica help, 14
mathematical constants, 11
MathLink interface, 6
matrices, 76
matrix power, 81
maximum, 63
mean, 144
Mean-Value Theorem, 61
measures of central tendency, 144
measures of variation, 144
median, 144
Mersenne prime, 43
minimum, 63
modulo operation, 36
modulus, 36
multiple datasets, 114
multiplication, 10
mutually prime, 37
natural logarithm, 11
negation, 29
nested lists, 76
nested loops, 151
networks, 129
Newton's Method, 68
nonlinear exact ODE, 90
nonlinear ODE, 89
nonsingular, 81
norm, 75
normal line, 66
notebook interface, 5
notebooks, 5
nth root, 13
null space, 82
number of real roots, 51
numerical notations, 13
optimization, 136
ordinary differential equation, 89
outer layer, 51
output, 6
overdetermined, 83
p series, 70
palettes, 8
palettes menu, 8
palindromic number, 43
parabola, 132
paraboloid, 132
parametric curves, 111
parametric plot, 97
parametric surfaces, 111
parantheses, 7
partial derivatives, 135
partial differential equations, 141
partial fraction, 47
particular solution, 91
pattern matching, 152
perfect number, 42
perimeter, 127
pie chart, 113
piecewise functions, 20
plane, 124
plotting curves, 97
point of intersection, 119
points, 117
polar plot, 99
polynomials expansion, 45
polynomials factoring, 45
postfix, 14
power, 10
power set, 31
precedence, 10
prefix, 14
prime factorization, 35
prime number, 34
prime palindromic, 41
probability density function, 145
probability distributions, 145
product, 71
proportion, 94
pure functions, 21
quadratic function, 21
quantifiers, 32
quotient, 36
radial distance in space, 105
radian, 11
rank of a matrix, 82
rational function, 47
reciprocal, 24
rectangles, 117
recursion formulas, 68
recursive function, 157
Recursive Squence, 68
reduced row echelon form, 84
regression, 146
regular polygon, 122
relatively prime, 37
remainder, 36
replace, 149
repunits, 42
right-hand limit, 59
row reduction, 84
row vector, 74
S. Ramanujan, 57
saddle, 103
scientific notations, 13
Sequences, 68
sets, 31
shortest path, 130
singular matrix, 82
smooth curves, 134
social number, 158
sombrero, 103
spherical coordinates, 105
Spiral of Archimedes, 132
square brackets, 7
square root, 11
standard normal curve, 132
substitution, 63
substitution rule, 20
subtraction, 10
sum, 69
surface integrals, 140
symbol \&, 21
symmetric, 132
symmetric matrix, 87

tangent line, 61

tautology, 30
taxicab number, 57
Taylor polynomials, 71
Taylor series, 70
text-based interface, 5
tick marks, 101
toroidal spiral, 132
total derivative, 62
trace, 82
transcendental functions, 47
transforming fields, 109
transpose, 81
triangular matrix, 78
tridiagonal matrix, 87
trigonometric functions, 11
triple integrals, 137
truth tables, 29
twin primes, 43
underdetermined, 83
underscore character, 18
union, 31
unit ball, 125
unit disk, 123
unit matrix, 79
unit square, 122
unit vector, 87
universal set, 31
upper-triangular matrix, 78
vector field, 140
vector projection, 88
vector-valued function, 140
vectors, 74
vertical angle measured, 105
vertical range, 94
visualize a matrix, 116
volume, 126
wave equation, 142
Wolfram Language, 5

