

Philadelphia University Faculty of Science Department of Basic Science First semester, 2020/2021

Course syllabus

Course title: General Chemistry 2	Course code: 0212103		
Course level: 2	Course prerequisite (s) and/or corequisite (s): pass general chemistry1 (0212101)		
Lecture time: (Sun,Tue,Thu) 11:10- 12:00 Mon., Wed., (17:45 - 19:15)	Credit hours: 3		

Academic Staff Specifics				
Name	Rank	Office number and location	Office hours	E-mail address
Khadeejah Al Abrouni	Lecturer	Science building 1019	9-10 am Sun., Tue., Thu.	kabrouni@philadelphia.edu.jo
		Nursing building 9212	11-12 pm Mon.,Wed,	

Course description (According to the University Catalogue)

The courses introduce the fundamental theories of chemistry, molecular and intermolecular forces, liquids and solids, physical properties of solutions, kinetic chemistry, chemical equilibrium, acids and bases, acid equilibrium: solubility base and equilibrium, energy relations in chemical reactions. Thermochemistry (Thermodynamics).

Course objectives:

- Present a fundamental store a chemical information and understanding of the need for theory.
- Understand the theme centers on the development of theoretical explanations of observed facts.
- Understand the concept energy relationships in chemical reactions, intermolecular forces and physical properties of solutions.
- To give the students some ideas about kinetics, equilibrium and thermodynamic.

- Text book/ books (title , author (s), publisher, year of publication) Title: General Chemistry, The Essential Concept, 6th edition Author: Raymond Chang. Publisher: McGraw Hill 2011 ISBN: 978-007-131368-1
- Support material (s): -----
- Laboratory Handbook/ books (when applicable): Title: Featuring Experiments in General Chemistry Measure Net , 6th edition Author: Bobby Stanton, Lin Zhu, Charles H. Atwood Publisher: Brooks/Cole 2010 ISBN: 978-0-495-56179-8
- Support material (s) (vcs, acs, etc). -----
- Study guide (s) (when applicable) ------
- Laboratory Handbook/ books (when applicable) ------

<u>Teaching methods</u>(Lectures, discussion groups, problem solving, debates, etc)(online)

Learning outcomes:

Knowledge and understanding.

- Understanding of chemical calculation.
- Knowing the relationship in chemical reaction
- Knowing the forces in molecules

Cognitive skills (thinking and analysis).

- Asses information relevant to a question
- Analysis, evaluate and synthesize information
- Use critical thinking and logic in the solution problems
- Solve problems using basic mathematical skill

Communication skills (personal and academic).

- Express ideas through written communication by home works
- Improve general performance for student through the interaction with each otherin solving chemical problems

Transferable Skills.

- To generalize the analytical and quantitative skills in this courses and advance cources
- Employ efficient method of analysis and to assess the result of calculation
- Respect roules and regulation of institution
- Psychomotor Skills (When applicable)

Assessment instruments

- Exams (Midterm and Final Exams)
- Quizzes.
- Homework assignments

Allocation of Marks			
Assessment Instruments	Mark		
Midterm examination	30		
Final examination: 50 marks	50		
quizzes, homework	20		
Total	100		

Documentation and academic honesty

• Documentation style (with illustrative examples)

Submit your home work in sheet containing your name, number of the homework.(online)

• Protection by copyright

Student should realize that some published information or data are the property of their authors and they are not allowed to use it without asking permission from the originators.

• Avoiding plagiarism.

Plagiarism is the unauthorized use or close imitation of the language and thoughts of another author.

Students must pursue their studies

	Basic and support material to be covered	Homework/ reports and their due dates
(1),(2)	Chapter 12 Ch. 12	
	Intermolecular forces and liquids	
	12.1 The Kinetic Molecular Theory of	
	Liquids and Solids	
	12.2 Intermolecular Forces	
	12.3 Properties of Liquids	
	12.6 Phase Changes	
	12.7 Phase Diagrames	
(3), (4)	Chapter 13	
	Physical properties of a solution	
	13.1 types of solution	
	13.2 a molecular view of the solution	
	process	

Course/ academic calendar

	13.2 A Molecular View of the Solution	
	Process	
	13.3 Concentration Units	
	13.4 Effect of Temperature on	
	Solubility	
	13.6Colligative Properties	
(5),(6)	Ch. 14	
	Chemical Kinetics	
	14.1 The rate of a reaction	
	14.2 The rate laws	
	14.3 Relation between reactant	
	concentrations and time	
	14.4 Activation energy and	
	temperature dependence of rate	
	constants	
	14.5 Reaction Mechanisms	
	14.6 Catalysis	
 (6)	First exam	
(7),(8)	Ch. 15	
	Chemical Equilibrium	
	15.1 The Concept of equilibrium	
	15.2 Ways of expressing equilibrium	
	constants	
	15.3 What does the equilibrium	
	constant tell us	
	15.4 Factors that affect chemical	
	equilibrium	
(9),(10)	Chapter 17	
	Acid-Base Equilibria and Solubility	
	Equilibria	
	17.1 Homogeneous Versus	
	Heterogeneous Solution Equilibria	
	17.2 Buffer Solutions	
	Preparing a Buffer Solution with a	
	Specific pH	
	17.3 A Closer Look at Acid-Base	
	Titrations	
	17.4 Acid-Base Indicators	
	17.5 Solubility Equilibria	
	Solubility Product. Molar Solubility and	
	Solubility	
	Predicting Precipitation Reactions	
	17.6 The Common Ion Effect and	
	Solubility	
	17.7 Complex Ion Equilibria and	
	Solubility	
	17.8 Application of the Solubility	
	Product Principle to Qualitative	
	Second exam	

(11),(12)	 Ch. 6 Energy Relationships in Chemical Reactions 6.1 The Nature of Energy and Types of Energy 6.2 Energy Changes in Chemical Reactions 6.3 Introduction to Thermodynamics The First Law of Thermodynamics. Work and Heat 6.4 Enthalpy of Chemical Reactions Enthalpy. Enthalpy of Reactions. Thermochemical Equations 6.5 Calorimetry Specific Heat and Heat Capacity. Constant-Volume Calorimetry. Constant-Pressure Calorimetry 6.6 Standard Enthalpy of Formation and Reaction The Direct Method. The Indirect Method 	
(13),(14)	 Chapter 18 Energy and Thermodynamics of chemical reactions 18.1 The Three Laws of Thermodynamics 18.2 Spontaneous Processes 18.3 Entropy 18.4 The Second Law of Thermodynamics 18.5 Gibbs Free Energy 18.6 Free Energy and Chemical Equilibrium 18.7 Thermodynamics in Living Systems 	
(15)	Final exam	

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Other Education Resources

Books

Title: *Chemistry: The Molecular Nature of Matter and Change*, 5th edition Author : **Martin Silberberg** Publisher:Mc Graw Hill 2009 ISBN: 978-0-07-1283540**Journals**

Websites
