

Philadelphia University

Faculty of Engineering & Technology Department of Mechatronics Engineering First Semester 2019/2020

Course Details:

Advanced Measurement Systems and Sensors (0640732)				
BS Degree in Mechatronics or related field				
3 credit hours (16 weeks per semester, 3 hours/week)				
Jacob Fraden, "Handbook of Modern Sensors: Physics, Designs, and				
Applications" Springer, 2010, ISBN 978-1-4419-6465-6.				
http://link.springer.com/book/10.1007%2F978-1-4419-6466-3				
The course is based on mechatronic philosophy, regarding mechanic,				
electronic and informatics as a whole. After finishing the course the student				
should be able to design, analyze and/or select the best suited sensors for a				
specified problem, regarding range, accuracy, dynamic behavior,				
environment requirements etc.				
Prof. Kasim M. Al-Aubidy				
kma@philadelphia.edu.jo, alaubidy@gmail.com				
http://www.philadelphia.edu.jo/academics/kaubaidy/				
 Advanced Measurement Systems and Sensors (0640732) BS Degree in Mechatronics or related field rs: 3 credit hours (16 weeks per semester, 3 hours/week) Jacob Fraden, "Handbook of Modern Sensors: Physics, Designs, and Applications" Springer, 2010, ISBN 978-1-4419-6465-6. http://link.springer.com/book/10.1007%2F978-1-4419-6466-3 The course is based on mechatronic philosophy, regarding mechanic, electronic and informatics as a whole. After finishing the course the student should be able to design, analyze and/or select the best suited sensors for a specified problem, regarding range, accuracy, dynamic behavior, environment requirements etc. Prof. Kasim M. Al-Aubidy kma@philadelphia.edu.jo, alaubidy@gmail.com http://www.philadelphia.edu.jo, alaubidy@gmail.com				

Course Outlines:

Week	Торіс
1	Introduction: Mechatronics systems and Measurement systems, Sensors, Signals, and Systems;
	Sensor Classification; Units of Measurements.
2	Sensor Characteristics: Transfer Function; Calibration; Accuracy; Hysteresis; Nonlinearity;
4	Saturation; Repeatability; Dead Band; Resolution;
3	Sensor Characteristics: Dynamic Characteristics; Environmental Factors; Reliability;
	Application Characteristics; Uncertainty
	Physical Principles of Sensing: Electric Charges, Fields, Capacitance, Magnetism, Induction,
4	Resistance, Piezoelectric Effect, Hall Effect, Thermoelectric Effects, Temperature and Thermal
	Properties of Materials, Heat Transfer, Light, Dynamic Models of Sensor Elements.
5,6	Weltage Converters, Excitation Circuits, Analog to Digital Converters, Bridge Circuits, Data
	Transmission Noise in Sensors and Circuits
	Mation Detectors: Ultrasonic Detectors Microwave Motion Detectors Canacitive Occupancy
7	Detectors Triboelectric Detectors Ontoelectronic Motion Detectors Ontical Presence Sensors
	Pressure-Gradient Sensors.
	Position, Displacement, and Level: Potentiometric Sensors, Capacitive Sensors, Inductive and
8	Magnetic Sensors, Optical Sensors, Ultrasonic Sensors, Radar Sensors, Thickness and Level
	Sensors, Pointing Devices.
0	Velocity and Acceleration: Accelerometer Characteristics, Capacitive Accelerometers,
9	Piezoresistive, Piezoelectric Accelerometers, Gyroscopes, Gravitational Sensors.
	Force, Strain, Tactile Sensors and Pressure Sensors: Pressure Sensors: Concepts of Pressure,
10	Mercury Pressure Sensor, Bellows, Membranes, and Thin plates, Piezoresistive Sensors,
10	Capacitive Sensors, VRP Sensors, Optoelectronic Pressure Sensors, Indirect Pressure Sensor,
	Vacuum Sensors.
	Flow Sensors: Basics of Flow Dynamics, Pressure Gradient Technique, Thermal Transport
11	Sensors, Ultrasonic Sensors, Electromagnetic Sensors, Breeze Sensor, Coriolis Mass Flow
	Sensors, Drag Force Sensors, Dust and Smoke Detectors,
12	Acoustic Sensors: Resistive Microphones, Condenser Microphones, Fiber-Optic Microphone,
	Discussion Mission Internet Demonstration Calif. Glass Association Determined
	Piezoelectric Microphones, Dynamic Microphones, Solid-State Acoustic Detectors,

	Light Detectors: Photodiodes, Phototransistor, Photoresistors, Cooled Detectors, Image Sensors,
	Thermal Detectors, Gas Flame Detectors.
	Temperature Sensors: Coupling with Object, Temperature Reference Points, Thermoresistive
14	Sensors, Thermoelectric Contact Sensors, Optical Temperature Sensors, Acoustic Temperature
	Sensor, Piezoelectric Temperature Sensors.
15	Chemical Sensors: Chemical Sensor Characteristics, Biochemical Sensors, Multisensor Array.
16	Smart sensors: Smart sensor systems (Definition – Different types- new trends)

Course Learning Outcomes with reference to ABET Student Outcomes:

Upon successful completion of this course, student should:

1	Describe the concepts of different measurement & Mechatronics systems used in	[م ل م]
1.	industry	[a, u, c]
2.	Describe the function, suitability of different sensors and Transducers.	[a, c]
3.	Analyze, Design and/or select the suitable sensors for a given system.	[a, c, d]
4.	Analyze & design the signal conditioning circuits.	[a, c]
5.	Conduct research in measurement system and sensor field to generate novel techniques.	[a, c]
6.	Carry out calibration and error estimation of measuring devices	[a, c]
7	Improve system performance	[e, k]

Assessment Guidance:

Evaluation of the student performance during the semester (total final mark) will be conducted according to the following activities:

U					
Mid-Exam (30%):	The students will be subjected to scheduled written exam during the				
	semester to cover materials given in lectures.				
Assignments (10%):	Assignments and technical notes will be prepared by students and				
	submitted before or on a set agreed date.				
Projects (20%):	Students will be assigned to present project(s).				
Final Exam (40%):	The students will undergo a scheduled final exam at the end of the				
	semester covering the whole materials taught in the course.				
Note: Chapting by	Note: Chapting by conving homework from others is strictly forbidden and nunishable h				

Note: Cheating by copying homework from others is strictly forbidden and punishable by awarding the work with zero mark.

Attendance Regulation:

The semester has in total 45 credit hours. Total absence hours from classes must not exceed 15% of the total credit hours. Exceeding this limit without a medical or emergency excuse approved by the deanship will prohibit the student from sitting the final exam and a zero mark will be recorded for the course. If the excuse is approved by the deanship the student will be considered withdrawn from the course.

References:

- 1. Pavel Ripka & Alois Tipek, "Modern Sensors Handbook", ISTE Ltd UK, 2007, ISBN 978-1-905209-66-8, <u>www.iste.co.uk</u>.
- 2. Ernest O. Doebelin, "Instrumentation Design Studies", CRC Press, Taylor & Francis Group, 2010.
- 3. Robert Bishop, "The Mechatronics Handbook", Second Edition, CRC Press 2002.
- 4. Pavel Ripka and Alois Tipek (editors), "Modern Sensors Handbook", ISTE Ltd, 2007.
- 5. Devdas Shetty & Richard Kolk, "Mechatronics System Design", 1997.
- 6. David G. Aldatore & Michael B. Histand, "Introduction to Mechatronics and Measurement Systems", McGraw Hill, 2004.

Oct, 2019