
Lecture١٤-ACA١

Advanced Computer Architecture
(0630561)

Lecture 14

Design Issues for
Parallel ComputersParallel ComputersParallel ComputersParallel Computers

Prof. Kasim M. Al-Aubidy
Computer Eng. Dept.



Lecture١٤-ACA٢

Introduction:
• When approaching a new parallel computer system, three fundamental

questions to ask are:
• Q1: what are the nature, size, and number of processing elements?
• Q2: what are the nature, size, and number of memory modules?
• Q3: what are the processing and memory elements interconnected?
Processing Element (PE): ALUs to complete CPUs size; small portion of a

chip.
Memory System: split up into modules that operate independently in parallel

to allow access by many CPUs at the same time. Memory models may be
small or large, closely integrated with CPUs or located on a different board.

Connection: a collection of chips that are connected in one manner or other.
• Some parallel computers are designed to run multiple independent jobs

simultaneously (do no communicate).
• Parallel computer used to run a single job consisting of many parallel

processors.



Lecture١٤-ACA٣

• Loosely Coupled: systems with a small number of large, independent
CPUs that have low-speed connections between CPUs.

• Tightly Coupled: systems with smaller components, closer together and
interact with each other frequently over a high bandwidth communication
networks.



Lecture١٤-ACA٤

Communication Models:
Two designs have been proposed and implemented;
- Multiprocessors, and
- Multicomputers.
Multiprocessors:
- All CPUs share a common physical memory.
- All processes working together on a multiprocessor can share a single

virtual address space mapped onto the common memory.
- Any process can read or write a word of memory by just executing LOAD

or STORE instruction.



Lecture١٤-ACA٥

Multicomputers:
• Each CPU has its own local memory, accessible only to itself and not to

any other CPU. Access achieved by LOAD and STORE instructions.
• Multicomputers have one physical address space per CPU, while

multiprocessors have a single physical address space shared by all
CPUs.

• CPUs on multicomputers can not communicate by just reading and
writing the common memory, they need a different communication
mechanism (using the interconnection network).



Lecture١٤-ACA٦

Interconnection Networks:
• Multiprocessors and multicomputers require both similar interconnection

networks, this is mainly due to:
1. Multiprocessors have multiple memory modules that must be

interconnected with one another and with the CPUs.
2. Both of them use message passing.
3. In large multiprocessors, communication between CPUs and remote

memory consists of the CPU sending an explicit message (called
packet) to memory requesting some data, and the memory sending
back a reply packet.

• Interconnection networks consist of FIVE components;
1. CPU
2. Memory modules
3. Interfaces
4. Links
5. Switches



Lecture١٤-ACA٧

Interface: is a chip or a board that is attached to each CPU’s local bus and
can talk to CPU and to local memory. It has a programmable processor
and RAM private to it alone.

Links: are physical channels over which the bits move. They can be
electrical or optical fiber, serial or parallel. Each link has a maximum
bandwidth (no of bits/sec). Links can be;

1. Simplex (unidirectional),
2. Half-duplex (one way at a time),
3. Full-duplex (both ways at a time)

Switches: are devices with multiple input ports and multiple output ports.
When a packet arrives at a switch on an input port, some bits in the
packet are used to select the output port to which the packet is sent. A
packet might be a short (2 or 4 bytes) or longer (e.g. 8KBs).



Lecture١٤-ACA٨

Q: Why would anyone build multicomputers, when multiprocessors are
easier to program?

• Large multicomputers are much simpler and cheaper to build than
multiprocessors with the same number of CPUs. Implementing a memory
shared by even a few hundred CPUs is a big problem, whereas building
a multicomputer with 10000 CPUs or more is straightforward.

• Multiprocessors are hard to build but easy to program, whereas
multicomputers are easy to build but hard to program.

• One approach to building hybrid systems is based on the fact that
modern computer systems are constructed as a series of layers. This
opens the possibility of implementing the shared memory at any one of
several layers.



Lecture١٤-ACA٩

• The 2nd approach is to use multicomputer hardware and have the OS
simulate shared memory by providing a single system-wide paged
shared virtual address space. This approach is called Distributed
Shared Memory (DSM).

• Each page is located in one of the system memories.
• Each CPU has its own virtual memory and its own page tables.
• When a CPU does a LOAD or STORE on a page it does not have, a trap

to the OS occurs. The OS then locates the page and asks the CPU
currently holding it to unmap the page and send it over the
interconnection network. When it arrives, the page is mapped in and the
faulting instruction is restarted.

• The 3rd approach is to have a user-level runtime system implement a
form of shared memory. The programming language provides some kind
of shared memory abstraction, which is then implemented by the
compiler and runtime system.



Lecture١٤-ACA١٠



Lecture١٤-ACA١١

Interconnection Networks:

• Mode of Operation:
– Synchronous: a single global clock is used by all components

in the system.
– Asynchronous: No global clock required. Hand shaking

signals are used to coordinate the operation of asynchronous
systems.

• Control Strategy:
– Centralized: one central control unit is used to control the

operations of the components of the system.
– Decentralized: the control function is distributed among

different components in the system.



Lecture١٤-ACA١٢

Interconnection Networks:
• Switching Techniques:
– Circuit switching: a complete path has to be established prior

to the start of communication between a source and a
destination.

– Packet switching: communication between a source and a
destination takes place via messages divided into smaller
entities, called packets.

• Topology:
– Describes how to connect processors and memories to other

processors and memories.
– Static: direct fixed links are established among nodes to form

a fixed network.
– Dynamic: connections are established when needed.


