Advanced Comphter Arxchitecture
(0630561)

Lecture 4

Pipelining Processing

Prof. Kasim M. Al-Aubidy
Computer Eng. Dept.

ACA-¢Lecture

* A pipeline is a set of data processing elements
connected in series, so that the output of one
element is the input of the next one.

* The pipeline organization can be demonstrated
by this simple example:

e Multiply and Add Operation : 4i * Bi + Ci

e 3 Suboperation Segment
1) Rl <« Ai, R2 < Bi - Input Al and B
2) R3< R1*R2. R4 « Ci : Multiply and input Ci
3) RS« R3+R4 - Add Ci

ACA-¢Lecture

Content of Registers in Pipeline Example

Clock Segment] Segment 2 Segment 3
Pulse
Number R1 Rl R3 R4 R5

1 A, B, - — —
2 Aj B: A B, Ci —
3 As B, As* B, Cs A *B, + C
4 A B. Ay* By Cs A>* B, + C,
5 A B:'. Ai* B, Cq A]*B; T Cj
6 Aq i Aq* Bg Cs A B, + Cs
T A, B, A¢*By Cs As*Bs+ G
8 w— —_ A:-*Bj Cy Ag* B + Ca
Y — - — AyB:t (G

Each clock produces new output and moves the data one step down the pipeline.
When no more input data are available, the clock must continue until the last
output emerges out of the pipeline.

Yt

ACA-¢Lecture

Pipeline Logic:
« A clock drives all the registers in the pipeline. This clock causes the

CLC output to be latched in the register which provides input to the
next stage, and thus making a start of new computation possible for

next stage.
 The maximum clock rate is decided by the time delay of the CLC in

the stage and the delay of the staging latch.

I‘ E— 0
2

T & U

T

0 SR e, e

rasult

L = Latch or c:IncII-:ed register
D = Delay

ACA-¢Lecture

C lock

lnput
— il |

Each scguuent consists of CLC (Si) that performs a suboperation over the data
stream flowing through the pipe.

The segments are separated by registers (Ri) that hold the intermediate results
between stages.

Clock ' |
cycles | 1 2| 3a|la|s65| 68| 7| 8|9

1 T1! Tz Ta| Ta| Ts| Ts

E = TrInTeywTa| Ta| Ts| Ts
i:E:u b
[g 3 Ty |wT2w Ta| Ta|] Ts| Ts

IS
7
—
M
—
A
—
I
-
n
-
m

ACA-¢Lecture

Speedup S : Nonpipeline / Pipeline

e S=n-t, /(K+n-1)-t,

» N task humber (6)
» t,: Hime to complete each fask in nonpipeline

» ‘F:p.

= __Mr'ﬁ }}

T

% Clock cycles

e IfNn>o,S=1t,/t,

K : segment number (4)

- cfock cycle time (1 clock cycle)

l |
2 la)la s e | Flelo) o
T Jz2pnTa| Ta| Ts| Ts
—Fll JTz%Ta| Ta| Ts| Tse
—Fm dTz% Ta| Ta| Ts| Ts
;'.| T=2% Ta| Ta| Ts| Ts

e nonpipeline (t,) = pipeline (k= t;)

S=t,/t,

Ket,/t, =

k

ACA-¢Lecture

Instruction Pipelining

« |nstruction execution is extremely complex and
Involves several operations which are executed

successively
. The Instruction Cycle
instruction
¥
Decode O
Fetch - Calculate operand address (CO)
operand [} - Fetch operand (FO)
Execute - Execute instruction (EI)
instruction |1 - Write back operand (WQ)

« Pipelining 1s an implementation technigue whereby
multiple instructions are overlapped in execution.
This 1s solved without additional hardware but only
by letting different parts of the hardware work for

different instructions at the same time.
ACA-¢Lecture

The pipeline organization of a CFPLU is similar to an
assembly line: the work to be done in an instruction

Is broken into smaller steps (pieces), each of which
takes a fraction of the time needed to complete the

entire instruction. Each of these steps I1s a pipe
sfage (or a pipe saegimeaent).
Fipe stages are connaected to form a pipe:

—={Stage 1—=|Stage 22— ¢ » ¢« — = Stage n—

The time required for moving an instruction from
one stage to the next: a machine cycle (often this I1s
one clock cycle). The execution of one Instruction
takes several machine cycles as it passes through

the pipeline.

F - Feteh ML Inatruction A = ALU Operation
R - Read Source Registers M - Memoary Access ACA-Lecture

Acceleration by Pipelining

[WwWo stage pipeline:

Clock cycle —

Instr.
Instr.
Instr.
Instr.
Instr.
Instr.
Instr.

]
1+
1+2
1+3
1+4
1+5
1+6

FI: fetch instruction
El: execute instruction

1T 2 3 4 5 6 7 8
FI|EI
FlEl
FI|EI
FI|EI
Fl|El
Fl| El
Fl|El

We consider that each instruction takes execution time 7.,

Execution time for the 7 instructions, with pipelining:
(Tay!2)'8= 4" T,

ACA-¢Lecture

Four-segment CPU pipeline :
» 1) Fl: Instruction Fetch
» 2) DA : Decode Instruction & calculate EA
» 3) FO: Operand Fetch
» 4) EX : Execution

Step : 112|348 |67 | B9 [10]11]|12]13
Instruction > 1 | Fl [DA | FO | EX

2 Fl |DA|FOD|EX

4 T =

5 | SRR | | P
B -
‘ L
-1 ™

Fi o T

Bagmant 1.

Ssament 2 .

Patch Instruction
from mamory

Dacodde n&truction
and caleulats
effactive nddreas

Bsgment 3 !

Bagmant 4

Interrupt
handiing

Updata PC

Empoty olps

e
", -
=

Fatch opsrand
fram memary

v

Exscute inetruction

4—_ Interrupt? 3

.

-1'--. -L\---
" e

ik, it —
- =
L T

[

ACA-¢Lecture

Six stage pipeline

Fl. fetch instruction
Dl decode instruction

Clock cycle —

Instr. |

Instr. 1+ 1
Instr. 1+2
Instr. i1+3

Instr. 1+4
Instr. 1+5
Instr. 1+6

Execution time for the 7 instructions, with pipelining:

AR

1

FO: fetch operand

El:

execute instruction
CO: calculate operand address WO write operand

2 34 526 7 868 9101112

Fl

Lol

cO

FO

El

WOl

FI

D

O

FO

El

WO

Fl

Dl

-e

FO

El

WO

FI

]

O

FO

El

e

FI

D

co

FO

El

i

FI

D

co

FO

El

i

FI

B

CO

FO

El

WOl

(Tex/G)"12=2%T,,

ACA-¢Lecture

= After a certain iime (N-1 cycles) all the N stages of
the pipeline are working: the pipeline is filled. Now,
theoretically, the pipeline works providing maximal
parallelism (N instructions are active simultaneously).

« Apparently a greater number of stages always
provides better performance. However:

- a greater number of stages increases the over-
head Iin moving information between stages
and synchronization between stages.

- with the number of stages the complexity of the
CPU grows.

- Itis difficult to keep a large pipeline at maximum
rate because of pipeline hazards.

80486 and Pentium: five-stage pipeline for integer instr.

elght-stage pipeline for FP Instr.
PowerPC: four-stage pipeline for integer instr.

six-stage pipeline for FP instr.

VY ACA-¢Lecture

Pipeline and Parallel Processors:

Example: R= ((X*Y)+Z)/M iﬁﬂ ;{

A vector machine program would be like that: s—) | A)T 7
T !
subtasks | L, M, A, ga g_ DIV M
sweep direction L, M, A 1
gl B0 A STR. R
'L!i- ME- "'q!i- DE- S!r
SIMD Array L. M A, D S,
Frocessor L. M A, D, S, -a—jobtieldforithe computation
as flat saw L. M, A, D, S, A.={((X" ¥)+ Z) /M
Flow L, M, A D, S,
LD M‘D AIJ Dl:l SIJ

Iinstructions —i

1 Sweep direction

s | (Pipeline as a plow with jagged saw)

‘Y ACA-¢Lecture

Steady-state Analysis of Pipelines:
Let n=# of stages.
m= # of tasks run on the pipeline

« Efficiency (e): is the ratio of the
energy used in doing the work and the
total energy supplied.

m.n
(In+n-1).1n

m
(+n-1)

E-:

When n>>m, then e tends to be m/n.
When m>>n, then e tends to be1.

When n=m, then eis 0.5

V¢

Tasks Completed

L1

LI L

i ¥

g

m m+l Mmed

=N

%;*f

Wi,

A L

Energy lost

AL

% % jﬁyﬁ‘"
W ’f’j/:j‘ % ?/

A

/i

Y, Energy used

W,

U

o

N

.....

&

W,

W

:;’”.r"'

w] %r?

ﬁ

:%/

)

W,

W,
7,
L

5 B4

m m

Tima =t

frl 40

ACA-¢Lecture

Steady-state Analysis of Pipelines:
Let n=# of stages.
m= # of tasks run on the pipeline

Speedup (S): is the ratio of the time taken
by the nonpipelined architecture to the
time taken by the pipeline.

(I.f).m
(In+n-1).t

m.n
(m+n-1)

When n>>m, then S tends to be m.
When m>>n, then S tends to be n.

When n=m, then S is n/m

Yo

Tasks Compieted

i AEN N
5, LIRIT T ” T
5, LIRlL] %] « T,
5, EIEL] T
% i LT T, L
& 3 %9 m msl med 1
Time
1 lE“E'gl' Iog! , Energy used
FAEEEEL i 7
. W
'5:! %hﬁf fé W‘ H"': W" wﬂ W'J Hi", /{/;//I;f
B]
om V/ i
1 OGS ,/%//f;
fld iy b == - %V r."'l':'f’.-'
s || w|w[w|w|.|m|mE77
t 1 ¢ 3 B m ml m+n

Timg ——*

ACA-¢Lecture

Steady-state Analysis of Pipelines: . 1 IT““!G"T” "
e)
Let n=# of stages. ‘ L % 4
m= # of tasks run on the pipeline 8 ! Rt Bk N :
S.'l T TI TI- T T
Throughput (Q): is defined as the number s, elelelals « %
of tasks completed per unit amount of ; | & P =
time. 2 A el e ¥ i
B l“ 3 E 1 2 3 4 -f_ma s M mel Ma2
Q _ {l“ - 1} t _ t T IIEnergfIclsl Energy used
i '.I'-f,'-’:xz; “':J . "i'%' Wd wq wl w* i 4 B
S i
When n>>m, then Q tends to be m/(n.t) 5, %ﬁ;ﬁ% Wl W Ml ¥l | ¥ w"’%
e i
When m>>n, then Q tends to be1/t. 8, "% W[W | W W .|| %%
i A
. i,
When n=m, then Q is 0.5/t wlw W w| .. |W|W ’W’///
T 1 g & §- m sl m+n
Timg =t

1 ACA-¢Lecture

Processor Design: Pipeline

Fetch [F)
L1
Instructicn
Cache
Kemnohon
IR =
L et .
Instructicn
Decoder
= Register
egister Fil Re=ad [R])
(=F])
A== F Rrs_Aa | mRm A |FoOfset_ A |F PG_
=
i ALL (&)
5
= — AL
&
fd=s1i_M] [FFlag=] f ac= | Rt] F PC_
L1
Diata
Meamory (M)
BRI
Processor Data Path

\RY% ACA-¢Lecture

Summary

YA

Instructions are executed by the CPU as a
sequence of steps. Instruction execution can be

substantially accelerated by insfruction pipelining.

A pipeline is organized as a succession of N
stages. At a certain moment N instructions can be
active inside the pipeline.

Keeping a pipeline at its maximal rate is prevented
by pipeline hazards. Structural hazards are due to
resource conflicts. Datfa hazards are produced by
data dependencies between instructions. Conftrol
hazards are produced as consequence of branch
instructions

With conditional branch we have a penalty even if
the branch has not been taken. This is because we

have to walit until the branch condition is available.

Branch instructions represent a major problem in
assuring an optimal flow through the pipeline.
Several approaches have been taken for reducing

branch penalties

ACA-¢Lecture

