
C CSCMCS 611-101
Advanced Computer ArchitectureAdvanced Computer Architecture

Lecture 8Lecture 8

Control Hazards and Exception HandlingControl Hazards and Exception Handling

September 30, 2009September 30, 2009

www.csee.umbc.edu/~younis/CMSC611/CMSC611.htm

Mohamed Younis CMCS 611, Advanced Computer Architecture 1

Lecture’s Overview
Previous Lecture:Previous Lecture:

Data Hazards

F di t h i f i l d t h d l ti• Forwarding techniques for simple data hazards resolution

• Data hazards classifications and detection logic

L d d i li t ll d h t li it th i• Load-caused pipeline stalls and how to limit their scope

• Compiler-based instruction scheduling to avoid pipeline stalls

• Implementation of data hazard detection and forwarding logic

This Lecture

Control hazards

Pipelining and exception handling

Mohamed Younis CMCS 611, Advanced Computer Architecture 2

p g p g

Pipeline Hazards
Pipeline hazards are cases that affect instruction execution

semantics and thus need to be detected and corrected
Hazards types

Structural hazard: attempt to use a resource two different ways at same timeStructural hazard: attempt to use a resource two different ways at same time
E.g., combined washer/dryer would be a structural hazard or folder busy

doing something else (watching TV)
Si l f i t ti d d tSingle memory for instruction and data

Data hazard: attempt to use item before it is ready
E.g., one sock of pair in dryer and one in washer; can’t fold until get sock

from washer through dryer
instruction depends on result of prior instruction still in the pipeline

Control hazard: attempt to make a decision before condition is evaluated
E.g., washing football uniforms and need to get proper detergent level;

need to see after dryer before next load in
branch instructions

Mohamed Younis CMCS 611, Advanced Computer Architecture 3

branch instructions

Hazards can always be resolved by waiting

Control hazards are caused by the uncertainty of the execution path, branch

Control Hazard
y y p ,

taken or untaken

If the branch is to be taken, the PC is not normally changed until the end of
the MEM stagethe MEM stage

The simplest way to deal with control hazards is to stall the pipeline

Branch Instruction IF ID EX DM WBBranch Instruction IF ID EX DM WB
Branch successor IF Stall Stall IF ID EX DM WB ID
Branch successor + 1 IF ID EX DM WB
B h 2 IF ID EX DM

Impact: 2 clock cycles wasted per branch instruction ⇒ slow

Branch successor + 2 IF ID EX DM

Performance penalty can be limited by:
move up decision to 2nd stage by adding hardware to check registers as
being read (MIPS allows only comparison with zero in the condition)

Mohamed Younis CMCS 611, Advanced Computer Architecture 4

Compute the address of the branch target earlier in the pipeline

Enhanced Pipeline Datapath
Taken address

calculation Result of condition
evaluation

When taken,
IF/ID is reset to

Mohamed Younis CMCS 611, Advanced Computer Architecture 5

zero to make it
a “nop”

Condition evaluated and taken address calculated at ID stage

Impact of Modifications
Condition evaluated and taken address calculated at ID stage

I
n

Time (clock cycles)

s
t
r. Add

A
LUMem Reg Mem Reg

O
r
d
e

Beq

A
LUMem Reg Mem Reg

e
r Load

A
LUReg Mem RegMemStall

Mohamed Younis CMCS 611, Advanced Computer Architecture 6

2 clock cycles per branch instr. (1 cycle wasted) ⇒ still slow
* Figure is courtesy of Dave Patterson

Predict: guess one direction then back off if wrong

Control Hazard Solution (I)

Predict untaken: machine state must be updated to ensure correct semantics
Impact: 1 clock cycles per branch instruction if right, 2 if wrong

Taken Branch Instr IF ID EX DM WBTaken Branch Instr. IF ID EX DM WB
Branch successor IF idle idle idle idle
Branch target IF ID EX DM WB
Branch target + 1 IF ID EX DM WB

I
n

Time (clock cycles)

Branch target + 2 IF ID EX DM WB

n
s
t
r.

Add
Beq

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

O
r
d

Beq
Load

Ug g

Mem

A
LUReg Mem Reg

Mohamed Younis CMCS 611, Advanced Computer Architecture 7

d
e
r * Figure is courtesy of Dave Patterson

Branch Behavior in Programs
Forward taken

br
an

ch
es

Backward taken

rk

Forward conditional branchesnd
iti

on
al

 b

B
en

ch
m

ar

Forward conditional branches

Backward conditional branches

Unconditional branches

ge
 o

f a
ll

co

B

Pe
rc

en
ta

g

Percentage of instructions executedBenchmark
60% of for ard and 15% of back ard branches are taken (mainl loops)

Mohamed Younis CMCS 611, Advanced Computer Architecture 8

60% of forward and 15% of backward branches are taken (mainly loops)
67% of the branches (forward and backward) are taken on average

Redefine branch behavior (takes place after next instr.) “delayed branch”

Control Hazard Solution (II)

Compiler optimization plays an essential role in filling delay slots

I
n

Time (clock cycles)
n
s
t
r.

Add

A
LUMem Reg Mem Reg

O
r
d

Beq

A
LUMem Reg Mem Reg

A

e
r

Misc Mem

A
LUReg Mem Reg

L d Mem

A
LR Mem RegLoad Mem LUReg Mem Reg

Impact: 0 clock cycles per branch instruction if can find instructions to put in

Mohamed Younis CMCS 611, Advanced Computer Architecture 9

Impact: 0 clock cycles per branch instruction if can find instructions to put in
the delay “slot”

* Slide is courtesy of Dave Patterson

Scheduling Branch-Delay Slots

Replication
is necessary

Must be OK to
execute, e.g.
R7 is temp reg

Mohamed Younis CMCS 611, Advanced Computer Architecture 10

Best scenario Good for loops Good taken strategy

Branch-Delay Scheduling Requirements
S h d li I fScheduling

Strategy Requirements Improves performance
when?

(a) From before Branch must not depend on the
rescheduled instructions

Always

(b) From target Must be OK to execute rescheduled
instructions if branch is not taken.
May need to duplicate instructions.

When branch is taken. May
enlarge programs if
instructions are duplicated.

The limitation on delayed branch scheduling arise from:

(c) From fall
 through

Must be okay to execute instructions
if branch is taken.

When branch is not taken.

The limitation on delayed-branch scheduling arise from:

1. Restrictions on the instructions that are scheduled into the delay slots

2 Ability to predict at compile-time whether a branch is likely to be taken2. Ability to predict at compile time whether a branch is likely to be taken

To improve the ability of the compiler to fill branch delay slots with little
undo penalty, a capability for cancellation (turning to no-op) is added

Mohamed Younis CMCS 611, Advanced Computer Architecture 11

Additional PC is needed to allow safe operation in case of interrupts

Performance of Branch-Delay
es Canceled delay slots

l B
ra

nc
he

Canceled delay slots
Empty slot

nd
iti

on
al

ge
 o

f C
o

Pe
rc

en
ta

P

Benchmark

O 30% f th b h d l l t t d

Mohamed Younis CMCS 611, Advanced Computer Architecture 12

On average 30% of the branch delay slots are wasted
(integer programs are worse than floating point)

Static Branch Prediction
Examination of program behavior

Assume branch is usually taken based on statistics but misprediction rate still
range from 9%-59%

P di t b h di ti f d/b k d b d t ti ti d dPredict on branch direction forward/backward based on statistics and code
generation convention

Profile information from earlier program runs

w
ee

n
on

Predict taken

Profile based

ct
io

ns
 b

et
w

is
pr

ed
ic

tio
In

st
ru m

i

Mohamed Younis CMCS 611, Advanced Computer Architecture 13

Profile-based Predictor Performance
ra

te
ed

ic
tio

n
r

M
is

pr
e

Benchmark

Misprediction rate varies widely but is generally better for FP programs

Mohamed Younis CMCS 611, Advanced Computer Architecture 14

Actual performance depends on both prediction accuracy & branch frequency

Performance of MIPS Integer Pipeline
P f i b dal

l

Branch stalls

Performance is based on a
perfect memory system with
all cache hits

s
th

at
 s

ta

Load stalls Basic delayed branch with
cancellation support and
thus costing one delay cycle

st
ru

ct
io

ns

Integer programs exhibit an
average of 0.06 branch stalls
per instruction and 0.05 load of

 a
ll

in
s

p
stalls per instruction

Average CPI from MIPS
pipelining with perfectrc

en
ta

ge

pipelining with perfect
memory is 1.11

SPECint92 performance
can be enhanced b a

Pe
r

Mohamed Younis CMCS 611, Advanced Computer Architecture 15

can be enhanced by a
factor of 5/1.11 = 4.5

Exception Types and Requirements
Famous Types of Exceptions

I/O device request
Breakpoint
Integer arithmetic overflow

Misaligned memory accesses
Memory-protection violation
Undefined instructionInteger arithmetic overflow

FP arithmetic anomaly
Page fault

Undefined instruction
Privilege violation
Hardware and power failure

Requirements Characterization
Synchronous vs. asynchronous

Async. Excep. are caused by I/O devices and allows completion of current instr.
User requested vs. coerced

requested exceptions are predictable and easier to handle
User Maskable vs. unmaskable
Within vs. between instructions

Exceptions occurring within instructions are synchronous
It is harder to deal with exceptions that occur within instructions

Mohamed Younis CMCS 611, Advanced Computer Architecture 16

Resume vs. terminate
it is easier to implement exceptions that terminate program execution

Exception Categorization (Example)
Synchronous User req. User Within Vs Resume

Exception Type Vs
Asynchronous

vs
coerced

maskable Vs
nonmaskable

between
instructions

Vs
terminate

I/O device request Asynchronous Coerced nonmaskable between Resume
Invoke operating system synchronous User req. nonmaskable between Resume

Tracing instruction execution synchronous User req. maskable between Resume
Breakpoint synchronous User req. maskable between Resume

Integer arithmetic overflow synchronous Coerced maskable Within Resume
FP fl d fl h C d k bl Withi RFP overflow or underflow synchronous Coerced maskable Within Resume

Page fault synchronous Coerced nonmaskable Within Resume
Misaligned memory access synchronous Coerced maskable Within Resume

Memory protection violations synchronous Coerced nonmaskable Within ResumeMemory protection violations synchronous Coerced nonmaskable Within Resume
Using undefined instructions synchronous Coerced nonmaskable Within terminate

Hardware malfunctions Asynchronous Coerced nonmaskable Within terminate
Power failure Asynchronous Coerced nonmaskable Within terminate

Exceptions occurring within an instruction are the most difficult to handle
since they require background saving of the program state

Pipelines is called “restartable” if it allo s an instr ction to be restarted after

Mohamed Younis CMCS 611, Advanced Computer Architecture 17

Pipelines is called “restartable”, if it allows an instruction to be restarted after
exception handling

Stopping & Restarting Execution
Some exception, e.g. page fault, takes place while the instruction is in the So e e cept o , e g page au t, ta es p ace e t e st uct o s t e
MEM stage, requiring the instruction to be restarted
When an exception occurs, the pipeline control can do the following:
1 Force a trap instruction into the pipeline on the next IF1. Force a trap instruction into the pipeline on the next IF
2. Until the trap is taken, turn off all writes for the faulting instruction and

all the instructions that follow
3. After the exception-handling routine in the operating system receives

control, it saves the PC of the faulting instruction

When using delayed branching, it is impossible to recreate the state using a g y g, p g
single PC since the instructions may not be sequentially related
A pipeline that allows instructions before the faulting one to complete and
those after it to restart is said to have precise exceptionthose after it to restart, is said to have precise exception
Ideally faulting instructions will not change the state of the machine before
the exception occur, however if it does, exception handling gets complex
S i i i i lifi h i i f d

Mohamed Younis CMCS 611, Advanced Computer Architecture 18

Supporting precise exceptions simplifies the operating system interface and
is required in machines that implements demand paging

Pipeline Stage Problem exceptions occurring

Exceptions in MIPS
p g p g

IF Page fault on instruction fetch; misaligned
memory access; memory protection violation

ID Undefined or illegal opcodeID Undefined or illegal opcode
EX Arithmetic exception

MEM Page fault on data fetch; misaligned memory MEM g ; g y
access; memory protection violation

WB None

Multiple exceptions might occur since multiple instructions are executing
(LW followed by DIV might cause page fault and an arith. exceptions in same cycle)

Exceptions can even occur out of order (e.g. a page fault of instr. memory
can occur earlier than a page fault of data memory caused by the proceeding
instruction in the pipeline)

Pipeline exceptions has to be handled in order of execution

Mohamed Younis CMCS 611, Advanced Computer Architecture 19

Pipeline exceptions has to be handled in order of execution
of faulting instructions not according to the time they occur

Precise Exception Handling
The MIPS Approach:

Hardware posts all exceptions caused by a given instruction in a status
vector associated with the instruction
The exception status vector is carried along as the instruction goes down the p g g
pipeline
Once an exception indication is set in the exception status vector, any control
signal that may cause a data value to be written is turned offg y
Upon entering the WB stage the exception status vector is checked and the
exceptions, if any, will be handled according to the time they occurred
Allowing an instruction to continue execution till the WB stage is not aAllowing an instruction to continue execution till the WB stage is not a
problem since all write operations for that instruction will be disallowed

Notes:
The MIPS machine design does not allow exception to occur at the WB stage
All write operations in the MIPS pipeline are in late stages
Machines that allow writing in early pipeline stages are difficult to handle

Mohamed Younis CMCS 611, Advanced Computer Architecture 20

Machines that allow writing in early pipeline stages are difficult to handle
since exceptions can occur after the machine state has been already changed

Instruction Set Complications
Early-Write Instructions

An instruction that has a single write at the last stage of the pipeline, e.g.
MIPS, can easily handle exceptions
Machines that allow for multiple writes, e.g. VAX auto-increment, during instr.
execution, usually require a capability to rollback the effect of an instruction
Instructions that update the memory state during execution, e.g. string copy,
temporary registers are saved and restored to allow instruction to continue

Branching mechanisms
Code based branching set by non-branch instructions requires special care if
an exception happen prior to executing the branch instructionan exception happen prior to executing the branch instruction

Multi-cycle operations
In machines with widely different instruction cycles, an instruction can make

lti l it d l d t h d d th ti bmultiple writes and cause complex data hazard, and thus exception become
very hard to handle

If architects realize the relationship between instruction set

Mohamed Younis CMCS 611, Advanced Computer Architecture 21

If architects realize the relationship between instruction set
design and pipelining, they can enable efficient pipelining

Conclusion
Summary

Control hazards
• Limiting the effect of control hazards via branch prediction and delay
• Static branch prediction techniques and performancep q p
• Branch delay issues and performance

Exceptions handling
• Categorizing of exception based on types and handling requirements• Categorizing of exception based on types and handling requirements
• Issues of stopping and restarting instructions in a pipeline
• Precise exception handling and the conditions that enable it

I t ti t ff t li ti i li d i• Instructions set effects on complicating pipeline design

Next Lecture
Pipelining floating point operationsPipelining floating point operations
An example pipeline: MIPS R4000

Mohamed Younis CMCS 611, Advanced Computer Architecture 22

Reading assignment includes Appendix A.4 & A.5 in the textbook

