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Lecture’s Overview
Previous Lecture:Previous Lecture:

Data Hazards

F di t h i f i l d t h d l ti• Forwarding techniques for simple data hazards resolution

• Data hazards classifications and detection logic

L d d i li t ll d h t li it th i• Load-caused pipeline stalls and how to limit their scope

• Compiler-based instruction scheduling to avoid pipeline stalls

• Implementation of data hazard detection and forwarding logic

This Lecture

Control hazards

Pipelining and exception handling
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Pipeline Hazards
Pipeline hazards are cases that affect instruction execution 

semantics and thus need to be detected and corrected
Hazards types

Structural hazard: attempt to use a resource two different ways at same timeStructural hazard: attempt to use a resource two different ways at same time
E.g., combined washer/dryer would be a structural hazard or folder busy  

doing something else (watching TV)
Si l f i t ti d d tSingle memory for instruction and data

Data hazard: attempt to use item before it is ready
E.g., one sock of pair in dryer and one in washer; can’t fold until get sock 

from washer through dryer
instruction depends on result of prior instruction still in the pipeline

Control hazard: attempt to make a decision before condition is evaluated
E.g., washing football uniforms and need to get proper detergent level; 

need to see after dryer before next load in
branch instructions
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branch instructions

Hazards can always be resolved by waiting



Control hazards are caused by the uncertainty of the execution path, branch 

Control Hazard
y y p ,

taken or untaken

If the branch is to be taken, the PC is not normally changed until the end of 
the MEM stagethe MEM stage

The simplest way to deal with control hazards is to stall the pipeline

Branch Instruction IF ID EX DM WBBranch Instruction  IF ID EX DM WB 
Branch successor   IF Stall Stall IF ID EX DM WB ID 
Branch successor + 1      IF ID EX DM WB
B h 2 IF ID EX DM

Impact: 2 clock cycles wasted per branch instruction ⇒ slow

Branch successor + 2 IF ID EX DM
 

Performance penalty can be limited by:
move up decision to 2nd stage by adding hardware to check registers as 
being read (MIPS allows only comparison with zero in the condition)
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Compute the address of the branch target earlier in the pipeline



Enhanced Pipeline Datapath
Taken address 

calculation Result of condition 
evaluation

When taken, 
IF/ID is reset to 
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zero to make it 
a “nop”



Condition evaluated and taken address calculated at ID stage

Impact of Modifications
Condition evaluated and taken address calculated at ID stage
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2 clock cycles per branch instr. (1 cycle wasted) ⇒ still slow
* Figure is courtesy of Dave Patterson



Predict: guess one direction then back off if wrong

Control Hazard Solution (I)

Predict untaken: machine state must be updated to ensure correct semantics
Impact: 1 clock cycles per branch instruction if right, 2 if wrong 

Taken Branch Instr IF ID EX DM WBTaken Branch Instr.  IF ID EX DM WB
Branch successor  IF idle idle idle idle    
Branch target   IF ID EX DM WB   
Branch target + 1    IF ID EX DM WB  
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Branch Behavior in Programs
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60% of for ard and 15% of back ard branches are taken (mainl loops)
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60% of forward and 15% of backward branches are taken (mainly loops)
67% of the branches (forward and backward) are taken on average



Redefine branch behavior (takes place after next instr.) “delayed branch”

Control Hazard Solution (II)

Compiler optimization plays an essential role in filling delay slots
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Impact: 0 clock cycles per branch instruction if can find instructions to put in
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Impact: 0 clock cycles per branch instruction if can find instructions to put in 
the delay “slot”

* Slide is courtesy of Dave Patterson



Scheduling Branch-Delay Slots

Replication 
is necessary

Must be OK to 
execute, e.g. 
R7 is temp reg
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Best scenario Good for loops Good taken strategy



Branch-Delay Scheduling Requirements
S h d li I fScheduling 

Strategy Requirements Improves performance 
when? 

(a) From before Branch must not depend on the 
rescheduled instructions

Always 

(b) From target Must be OK to execute rescheduled 
instructions if branch is not taken. 
May need to duplicate instructions. 

When branch is taken. May 
enlarge programs if 
instructions are duplicated. 

The limitation on delayed branch scheduling arise from:

(c) From fall  
      through 

Must be okay to execute instructions 
if branch is taken. 

When branch is not taken. 

 
The limitation on delayed-branch scheduling arise from:

1. Restrictions on the instructions that are scheduled into the delay slots

2 Ability to predict at compile-time whether a branch is likely to be taken2. Ability to predict at compile time whether a branch is likely to be taken

To improve the ability of the compiler to fill branch delay slots with little 
undo penalty, a capability for cancellation (turning to no-op) is added
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Additional PC is needed to allow safe operation in case of interrupts



Performance of Branch-Delay
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On average 30% of the branch delay slots are wasted 
(integer programs are worse than floating point)



Static Branch Prediction
Examination of program behavior

Assume branch is usually taken based on statistics but misprediction rate still 
range from 9%-59%

P di t b h di ti f d/b k d b d t ti ti d dPredict on branch direction forward/backward based on statistics and code 
generation convention  

Profile information from earlier program runs
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Profile-based Predictor Performance 
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Misprediction rate varies widely but is generally better for FP programs
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Actual performance depends on both prediction accuracy & branch frequency



Performance of MIPS Integer Pipeline
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can be enhanced by a 
factor of 5/1.11 = 4.5 



Exception Types and Requirements
Famous Types of Exceptions

I/O device request
Breakpoint 
Integer arithmetic overflow

Misaligned memory accesses
Memory-protection violation
Undefined instructionInteger arithmetic overflow

FP arithmetic anomaly
Page fault

Undefined instruction
Privilege violation
Hardware and power failure

Requirements Characterization
Synchronous vs. asynchronous

Async. Excep. are caused by I/O devices and allows completion of current instr.
User requested vs. coerced

requested exceptions are predictable and easier to handle
User Maskable vs. unmaskable
Within vs. between instructions

Exceptions occurring within instructions are synchronous 
It is harder to deal with exceptions that occur within instructions
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Resume vs. terminate
it is easier to implement exceptions that terminate program execution



Exception Categorization (Example)
Synchronous User req. User Within Vs Resume 

Exception Type Vs 
Asynchronous

vs 
coerced 

maskable Vs 
nonmaskable

between 
instructions

Vs 
terminate 

I/O device request Asynchronous Coerced nonmaskable between Resume 
Invoke operating system synchronous User req. nonmaskable between Resume 

Tracing instruction execution synchronous User req. maskable between Resume 
Breakpoint synchronous User req. maskable between Resume 

Integer arithmetic overflow synchronous Coerced maskable Within Resume 
FP fl d fl h C d k bl Withi RFP overflow or underflow synchronous Coerced maskable Within Resume

Page fault synchronous Coerced nonmaskable Within Resume 
Misaligned memory access synchronous Coerced maskable Within Resume 

Memory protection violations synchronous Coerced nonmaskable Within ResumeMemory protection violations synchronous Coerced nonmaskable Within Resume
Using undefined instructions synchronous Coerced nonmaskable Within terminate 

Hardware malfunctions Asynchronous Coerced nonmaskable Within terminate 
Power failure Asynchronous Coerced nonmaskable Within terminate 

 
Exceptions occurring within an instruction are the most difficult to handle 
since they require background saving of the program state 

Pipelines is called “restartable” if it allo s an instr ction to be restarted after
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Pipelines is called “restartable”, if it allows an instruction to be restarted after 
exception handling 



Stopping & Restarting Execution
Some exception, e.g. page fault, takes place while the instruction is in the So e e cept o , e g page au t, ta es p ace e t e st uct o s t e
MEM stage, requiring the instruction to be restarted 
When an exception occurs, the pipeline control can do the following:
1 Force a trap instruction into the pipeline on the next IF1. Force a trap instruction into the pipeline on the next IF
2. Until the trap is taken, turn off all writes for the faulting instruction and 

all the instructions that follow 
3. After the exception-handling routine in the operating system receives 

control, it saves the PC of the faulting instruction

When using delayed branching, it is impossible to recreate the state using a g y g, p g
single PC since the instructions may not be sequentially related
A pipeline that allows instructions before the faulting one to complete and 
those after it to restart is said to have precise exceptionthose after it to restart, is said to have precise exception
Ideally faulting instructions will not change the state of the machine before 
the exception occur, however if it does, exception handling gets complex
S i i i i lifi h i i f d
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Supporting precise exceptions simplifies the operating system interface and 
is required in machines that implements demand paging



 

Pipeline Stage Problem exceptions occurring

Exceptions in MIPS
p g p g

IF Page fault on instruction fetch; misaligned 
memory access; memory protection violation 

ID Undefined or illegal opcodeID Undefined or illegal opcode
EX Arithmetic exception 

MEM Page fault on data fetch; misaligned memory MEM g ; g y
access; memory protection violation 

WB None 

Multiple exceptions might occur since multiple instructions are executing
(LW followed by DIV might cause page fault and an arith. exceptions in same cycle)

Exceptions can even occur out of order (e.g. a page fault of instr. memory
can occur earlier than a page fault of data memory caused by the proceeding 
instruction in the pipeline) 

Pipeline exceptions has to be handled in order of execution
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Pipeline exceptions has to be handled in order of execution 
of faulting instructions not according to the time they occur



Precise Exception Handling
The MIPS Approach:

Hardware posts all exceptions caused by a given instruction in a status 
vector associated with the instruction
The exception status vector is carried along as the instruction goes down the p g g
pipeline
Once an exception indication is set in the exception status vector, any control 
signal that may cause a data value to be written is turned offg y
Upon entering the WB stage the exception status vector is checked and the 
exceptions, if any, will be handled according to the time they occurred
Allowing an instruction to continue execution till the WB stage is not aAllowing an instruction to continue execution till the WB stage is not a 
problem since all write operations for that instruction will be disallowed 

Notes:
The MIPS machine design does not allow exception to occur at the WB stage
All write operations in the MIPS pipeline are in late stages
Machines that allow writing in early pipeline stages are difficult to handle
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Machines that allow writing in early pipeline stages are difficult to handle 
since exceptions can occur after the machine state has been already changed



Instruction Set Complications
Early-Write Instructions

An instruction that has a single write at the last stage of the pipeline, e.g. 
MIPS, can easily handle exceptions 
Machines that allow for multiple writes, e.g. VAX auto-increment, during instr. 
execution, usually require a capability to rollback the effect of an instruction 
Instructions that update the memory state during execution, e.g. string copy, 
temporary registers are saved and restored to allow instruction to continue

Branching mechanisms
Code based branching set by non-branch instructions requires special care if 
an exception happen prior to executing the branch instructionan exception happen prior to executing the branch instruction

Multi-cycle operations
In machines with widely different instruction cycles, an instruction can make

lti l it d l d t h d d th ti bmultiple writes and cause complex data hazard, and thus exception become 
very hard to handle

If architects realize the relationship between instruction set
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If architects realize the relationship between instruction set 
design and pipelining, they can enable efficient pipelining



Conclusion
Summary

Control hazards
• Limiting the effect of control hazards via branch prediction and delay 
• Static branch prediction techniques and performancep q p
• Branch delay issues and performance

Exceptions handling
• Categorizing of exception based on types and handling requirements• Categorizing of exception based on types and handling requirements 
• Issues of stopping and restarting instructions in a pipeline 
• Precise exception handling and the conditions that enable it

I t ti t ff t li ti i li d i• Instructions set effects on complicating pipeline design 

Next Lecture
Pipelining floating point operationsPipelining floating point operations
An example pipeline: MIPS R4000
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Reading assignment includes Appendix A.4 & A.5 in the textbook


