
Prof. Kasim Al-Aubidy DERTS, MSc-2015 1

Lecture (12)

Real-Time Operating Systems

Prof. Kasim M. Al-Aubidy

Philadelphia University

Prof. Kasim Al-Aubidy DERTS, MSc-2015 2

Lecture Outline:
 Components of a simple operating system.

 Types of operating systems.

 RTOS for real-time systems.

 What an RTOS does? How it works?

 Benefits and drawbacks of an RTOS.

 Soft and hard tasks.

 Task states.

 Task Scheduling algorithms.

 Open-Source RTOS

Prof. Kasim Al-Aubidy DERTS, MSc-2015 3

What Operating System is?
An operating system (OS) is a software program that manages the hardware and

software resources of a computer.

 The OS performs basic tasks, such as controlling and allocating memory,

prioritizing the processing of instructions, controlling input and output devices,

facilitating networking, and managing files.

 Operating system goals:

 Execute user programs and make solving user problems easier.

 Make the computer system convenient to use.

 Use the computer hardware in an efficient manner.

Kernel: the lowest level of any OS,

 It is the 1st layer of software loaded into memory when a system boots or

starts up.

 It provides access to various services to all other system and application

programs. These services include: disk access, memory management, task

scheduling, and access to other hardware devices.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 4

General Purpose Operating System:

• OSs are used on most computer systems. The simplest computers, such as embedded
systems did not have OSs. Instead, they rely on the application programs to manage
the devices and with the help of libraries developed for this purpose.

Computer System Components:

1. Hardware; CPU, memory, I/O

devices.

2. OS; controls and coordinates the use

of the hardware among the various

application programs for the various

users.

3. Applications Programs; define the

ways in which the system resources

are used to solve the computing

problems of the users (compilers,

database systems, video games,

programs)

4. Users; people, machines, others ….

Prof. Kasim Al-Aubidy DERTS, MSc-2015 5

Prof. Kasim Al-Aubidy DERTS, MSc-2015 6

General Structure of a Simple OS:

• Command Processor: provides a means

to communicate with the OS.

• BDOS: functions;

 executes actual processing of the

user commands.

 handles the I/O and the file

operations on the disks.

 makes the actual management of the

file and I/O operations transparent to

the user.

• Application Programs: communicate

with the hardware through system calls

which are processed by the BDOS.

• BIOS: contains the various device

drivers which manipulate the physical

devices and OS.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 7

Types of Operating Systems:

There are different types of OSs:

• Single-user & Multi-user operating systems.

• Single-task & Multi-tasking operating systems.

• Real-time operating systems.

Multi-User Operating Systems:

• The OS ensures that each user can run a single

program as if the had the whole computer

system.

• At any given instance, it is not possible to

predict which user will have the use of the

CPU.

• The OS ensures that one user program cannot

interfere with the operation of another user

program. Each user program runs in its own

protected environment.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 8

Multi-Tasking Operating Systems:

• In a multi-tasking operating system,

it is assumed that there is a single

user and that the various tasks co-

operate to serve the requirements of

the user.

• Co-operation requires that all tasks

communicate with each other and

share common data.

• Task communication and data

sharing will be regulated so that the

OS is able to prevent inadvertent

communication or data access, and

hence protect data which is private to

a task.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 9

Multi-Tasking Operating Systems:

• A real-time multi-tasking operating

system has to support the resource

sharing and the timing requirements

of the tasks. Functions of an OS

can be divided as follows:

 Task Management: the allocation

of memory and processor time

(scheduling) to tasks.

 Memory Management: control of

memory allocation.

 Intertask Communication &

Synchronization: provision of

support mechanisms to provide

safe communication between tasks

and to enable tasks to synchronies

their activities.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 10

What is an RTOS?
An RTOS is a class of operating systems that are intended for real time-applications.

What is a real time application?
A real time application is an application that guarantees both correctness of result

and the added constraint of meeting a deadline.

A soft real-time system is one where the response time is normally specified as an

average value. This time is normally dictated by the business or market.

Ex: Airline reservation system.

A hard real-time system is one where the response time is specified as an absolute

value. This time is normally dictated by the environment.

• A system is called a hard real-time if tasks always must finish execution before

their deadlines or if message always can be delivered within a specified time

interval.

The RTOS allows access to sensitive resources with defined response times:

 Maximum response times are good for hard real-time.

 Average response times are ok for soft real-time.

Any system that provides the above can be classified as a real-time system.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 11

What makes an RTOS special?

• An RTOS will provide facilities to guarantee deadlines will be met.

• An RTOS will provide scheduling algorithms in order to enable

deterministic behavior in the system.

• An RTOS is valued more for predictability than throughput.

Design Philosophies of an RTOS?

Some of the design philosophies of an RTOS are with respect to:

 Scheduling

 Memory allocation

 Inter task communication

 Interrupt handlers

Prof. Kasim Al-Aubidy DERTS, MSc-2015 12

Example:

 All data must be delivered reliably

 – Bad if you turn the steering wheel, and nothing happens

 Commands from control system have highest priority, then sensors & actuators,

then control inputs

 – Anti-lock brakes have a faster response time than the driver, so priorities to

ensure the car doesn’t skid

 Network must schedule and priorities communications

Prof. Kasim Al-Aubidy DERTS, MSc-2015 13

Implementation Considerations:

Some real-time embedded systems are complex, implemented on

high-performance hardware, such as;

 Industrial plant control

 Civilian flight control

Many must be implemented on hardware chosen to be low cost, low

power, light-weight and robust; with performance a distant concern

 Military flight control, space craft control

 Consumer goods

Prof. Kasim Al-Aubidy DERTS, MSc-2015 14

Execution Time:

 A job Ji will execute for time ei.

 This is the amount of time required to complete the execution of Ji

when it executes alone and has all the resources it needs.

 Job execution time value (ei) depends upon complexity of the job

and speed of the processor on which it is scheduled. This value may

change for a variety of reasons:

• Conditional branches.

• Cache memories and/or pipelines.

 Execution times fall into an interval [ei-, ei+]; assume that we know

this interval for every hard real-time job, but not necessarily the

actual ei.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 15

Release and Response Time:

Release time: the instant in time when a job becomes available for

execution.

 May not be exact: Release time jitter so ri is in the interval [ri-, ri+]

 A job can be scheduled and executed at any time at, or after, its

release time, provided its resource dependency conditions are met.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 16

Response time: the length of time from the release time of the job

to the time instant when it completes.

Response time = Duration from released time to finish time

 Not the same as execution time, since may not execute

continually.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 17

Deadlines and Timing Constraints:

Completion time: the instant at which a job completes execution.

Relative deadline: the maximum allowable job response time.

Absolute deadline: the instant of time by which a job is required to

be completed (often called simply the deadline).

 absolute deadline = release time + relative deadline
 Feasible interval for a job Ji is the interval (ri, di)

• Deadlines are examples of timing constraints.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 18

Example: A system to monitor and control a heating furnace.

 The system takes 20ms to initialize when turned on.

 After initialization, every 100 ms, the system:

• Samples and reads the temperature sensor

• Computes the control-law for the furnace to process.

temperature readings, determine the correct flow rates of fuel,

air and coolant.

• Adjusts flow rates to match computed values.

The periodic computations can be stated in terms of release times of

the jobs computing the control-law: J0, J1, …, Jk, …

– The release time of Jk is 20 + (k × 100) ms

Prof. Kasim Al-Aubidy DERTS, MSc-2015 19

Example:

Suppose each job must complete before the release of the next job:

– Jk’s relative deadline is 100 ms.

– Jk’s absolute deadline is 20 + ((k + 1) × 100) ms.

Alternatively, each control-law computation may be required to finish

sooner, i.e. the relative deadline is smaller than the time between jobs,

allowing some slack time for other jobs.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 20

Scheduling Strategies:

There are two basic strategies for the scheduling of time allocation on a single CPU;

1. Cyclic Strategy:

 The task uses the CPU for as long as it wishes.

 It is a very simple strategy which is highly efficient, it minimizes the time lost

in switching between tasks.

 It is an efficient strategy for small embedded systems for which the execution

times for each task run are carefully calculated and for which the software is

carefully divided into appropriate task segments.

 This approach is too restrictive since it requires that the task units have similar

execution times. It is difficult to deal with random events using this approach.

2. Pre-emptive Strategies:

 There are many pre-emptive strategies, all involve the possibility that a task

will be interrupted before it has completed a particular invocation.

 The simplest form of pre-emptive scheduling is to use a time slicing approach.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 21

Priority Scheduling Mechanism:

 Tasks are allocated a priority level and at the end of a predetermined time slice,

the task with highest priority of those ready to run is chosen and is given control

of the CPU.

 Task priorities may be fixed (static priority system) or may be changed during

system execution (dynamic priority system).

 Dynamic priority schemes can increase the flexibility of the system.

 Changing priorities is risky as it makes it much harder to predict and test the

behavior of the system.

 The task management system has to deal with the handling of interrupts. These

may be hardware interrupts caused by external events, or software interrupts

generated by a running task.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 22

Priority Structures:
 Assign priorities to the tasks in the system.

 The priority will depend on how quickly a

task will have to respond to a particular

event.

 In most RTOSs, tasks can be divided into

three board levels:

1. Interrupt Level: Service routines for the

tasks and devices which require very fast

response (measured in msec.) Example: real-

time clock task.

2. Clock Level: Tasks with accurate timing

and repetitive processing, such as the sampling

and control tasks.

3. Base Level: tasks with low priority and

either have no deadlines to meet or are allowed

a wide margin of error in their timing. Tasks at

this level may be allocated priorities or may all

run at a single priority level.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 23

Clock Level:

• One interrupt level task will be the real-time clock.

• Typical values 1-200 msec.

• Each clock interrupt is known as a tick and represents the smallest time interval in

the system.

• The function of the clock interrupt handling routine is to update the time of day

clock in the system and to transfer control to dispatcher.

• The scheduler selects which task is to run at a particular clock rate.

• Clock level tasks divided into two categories;

 Cyclic: these are tasks which require accurate synchronization with outside

world.

 Delay: these tasks simply wish to have a fixed delay between successive

repetitions or to delay their activities for a given period of time.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 24

Prof. Kasim Al-Aubidy DERTS, MSc-2015 25

Cyclic Tasks:

• Cyclic tasks are ordered in a priority which reflects the accuracy of timing

required for the task, those which require high accuracy being given the highest

priority

• Tasks of lower priority within clock level will have some jitter since they will

have to await completion of the higher-level tasks.

Example:

• Three tasks A, B, and C are required to run at 20 msec, 40 msec and 80 msec

intervals. If the clock interrupt rate is set at 20 msec, and the task priority order

is set as A, B, and C with A as the highest priority. Then, thee following slid

shows task activation diagram for this example in two cases;

 Case (a): Task priorities are: A, B, then C.

 Case (b): Task priorities are: C, A, then B.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 26

Prof. Kasim Al-Aubidy DERTS, MSc-2015 27

Example:

• Now assume that task C takes 25 msec to complete, task A takes 1 msec and task

B takes 6 msec. if task C is allowed to run until completion then the activity

diagram is given bellow.

• Task A will be delayed by 11 msec at every fourth invocation.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 28

What is a Task?

Task is a sequence of similar jobs. Task is also called thread, is a

user application.

 Shares the CPU and resources with other tasks.

 Follows a defined life cycle.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 29

Task States:
Tasks are in one of four states:

1. Running: a ready task is scheduled
to run on the CPU.

2. Ready: task is neither delayed nor
waiting for any event to occur.

3. Waiting: task is waiting for certain
events to occur.

4. Inactive: procedures residing on
RAM/ROM is not an task unless
creating or calling to execute.

• Only one task can be Running at a
time (unless “multi-core” CPU is
used).

Prof. Kasim Al-Aubidy DERTS, MSc-2015 30

Task States:

Prof. Kasim Al-Aubidy DERTS, MSc-2015 31

Task Descriptor:

• Information about the status of each task is held in a block of memory by the RTOS. This

block is called Task Descriptor (TD), or Task Control Block (TCB) or Task Data Control

(TDC).

• The information is held in the TD will vary from system to system, but will typically

consist of the following:

- Task Identification. - Task Priority.

- Current state of task. - Pointer to next task in list.

- Area to store volatile environment (or a pointer to an area for storing the volatile

environment).

Example:

The next slide shows list structure for holding task state information:

• There is one active task (task ID=10).

• There are 3 tasks ready to run (ID=20, ID=9 and ID=6). The entry held in the executive

for the ready queue head points to task 20, which in tern points to task 9 and so on.

• The advantage of the list structure is that the actual TD can be located anywhere in the

memory and hence the OS is not restricted to a fixed number of tasks as the case in older

OSs which used fixed length tables to hold task state information.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 32

List structure for holding task state information:

Prof. Kasim Al-Aubidy DERTS, MSc-2015 33

Resource Control:

• The information transfer with external devices is not an easy task in programming.

• The availability of an I/O subsystem (IOSS) in an OS is essential for efficient
programming. This enables programmer to perform I/O by means of system calls.
The IOSS handles all the details of the devices.

• A typical IOSS will be divided into two levels; I/O Manager, and DCB.

• The I/O manager accepts the system calls

from the user tasks and transfers its

information to the Device Control Block

(DCB) for the particular device.

• The information supplied in the call by the

user task will be;

 the location of a buffer area in which

the data to be transferred is stored .

 the amount of data to be transferred.

 type of data.

 direction of transfer, and

 the device to be used.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 34

Detailed Arrangement of IOSS:
1. The actual transfer of the data between the user task and the device will be carried

out by the device driver and this segment of code will make use of other

information stored in the DCB.

2. A separate device driver may be provided for each device.

3. A single driver may be shared between several devices, however, each device will

require its own DCB.

4. The OS will normally be supplied with DCBs for the more common devices.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 35

Task Scheduling:

Static scheduling: a fixed schedule is determined statically.

Static-priority scheduling:

– Assign fixed priorities to tasks.

– A scheduler only needs to know about priorities.

Dynamic-priority scheduling:

– Assign priorities based on current state of the system.

– For example: Least Completion Time (LCT), Earliest Deadline

First (EDF), Least Slack Time (LST)

Prof. Kasim Al-Aubidy DERTS, MSc-2015 36

Real-Time Scheduling Algorithms:
Different classes of scheduling algorithm used in real-time systems:

1. Clock-driven Scheduling: used for hard real-time systems where all

properties of all jobs are known at design time, such that offline scheduling

techniques can be used

2. Weighted Round-robin Scheduling: used for scheduling real-time traffic in

high-speed, switched networks

3. Priority-driven Scheduling: used for more dynamic real-time systems with a

mix of clock-based and event-based activities, where the system must adapt to

changing conditions and events

Prof. Kasim Al-Aubidy DERTS, MSc-2015 37

1. Clock-driven Scheduling:
 Specific time instants are chosen before the system begins execution.

 Usually implemented using a periodic timer interrupt.

 Scheduler awakes after each interrupt, schedules the job to execute for the next

period, then blocks itself until the next interrupt.

 Typically in clock-driven systems:

 All parameters of the real-time jobs are fixed and known.

 A schedule of the jobs is computed off-line and is stored for use at runtime.

 Simple and straight-forward, not flexible.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 38

2. Weighted Round-Robin Scheduling:
Regular round-robin scheduling is used for scheduling time-shared applications.

 Every job joins a FIFO queue when it is ready for execution

 When the scheduler runs, it schedules the job at the head of the queue to

execute for at most one time slice.

 If the job has not completed by the end of its quantum, it is preempted and

placed at the end of the queue.

 When there are n ready jobs in the queue, each job gets one slice every n time

slices (n time slices is called a round).

 Only limited use in real-time systems.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 39

2. Weighted Round-Robin Scheduling:

In weighted round robin;

 Each job Ji is assigned a weight wi.

 The job will receive wi consecutive time slices each round, and

the duration of a round is wi.

 Equivalent to regular round robin if all weights equal 1.

 Simple to implement, since it doesn’t require a sorted priority

queue.

 Offers throughput guarantees, where each job makes a certain

amount of progress each round.

 By giving each job a fixed fraction of the processor time, a round

robin scheduler may delay the completion of every job.

 Weighted round-robin is primarily used for real-time networking.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 40

3. Priority-Driven Scheduling:

 Assign priorities to jobs, based on some algorithm.

 Make scheduling decisions based on the priorities, when events

such as releases and job completions occur.

 Priority scheduling algorithms are event-driven.

 Jobs are placed in one or more queues; at each event, the ready job

with the highest priority is executed.

 The assignment of jobs to priority queues, along with rules such a

whether preemption is allowed, completely defines a priority

scheduling algorithm.

 Priority-driven algorithms make locally optimal decisions about

which job to run.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 41

Example: Consider the following task which has eight jobs:
 Jobs J1, J2, …, J8, where Ji had higher priority than Jk if i < k.

 Jobs are scheduled on two processors (P1 and P2).

 Jobs communicate via shared memory, so communication cost is negligible.

 The schedulers keep one common priority queue of ready jobs.

 All jobs are preemptable; scheduling decisions are made whenever some job

becomes ready for execution or a job completes.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 42

Priority-Driven Scheduling:

Most scheduling algorithms used in non real-time systems are priority-

driven;

Assign priority based on release time, such as:

– First-In-First-Out

– Last-In-First-Out

Assign priority based on execution time, such as:

– Shortest-Execution-Time-First

– Longest-Execution-Time-First

Real-time priority scheduling assigns priorities based on deadline or

some other timing constraint:

– Earliest deadline first

– Least slack time first

Prof. Kasim Al-Aubidy DERTS, MSc-2015 43

Priority Scheduling Based on Deadlines:

1. Earliest Deadline First (EDF):

 Optimal dynamic priority scheduling

 A task with a shorter deadline has a higher priority

 Executes a job with the earliest deadline

Prof. Kasim Al-Aubidy DERTS, MSc-2015 44

Priority Scheduling Based on Deadlines:

2. Least Slack Time First (LST)

 A job Ji has deadline di, execution time ei, and was released at

time ri.

 At time t < di:

• Remaining execution time trem = ei - (t - ri)

• Slack time tslack = di - t - trem

 Assign priority to jobs based on slack time, tslack.

 The smaller the slack time, the higher the priority.

 More complex, requires knowledge of execution times and

deadlines.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 45

Open-Source RTOS:
There are many RTOSs available for use today, both commercial and experimental,

and new ones are still being developed. This is mainly due to:

• There is much research in the field of embedded systems,

• Real-time embedded applications are inherently less homogeneous than general

purpose applications, and

• The computing power and the overall hardware architecture of embedded

systems are much more varied than those of PCs.

Open-source OSs are especially promising, for two main reasons:

1. The source code of an open-source RTOS can be used both to develop real-

world applications, and for study and experimentation.

2. Open-source RTOSs have no purchasing cost, so their adoption can cut down

the costs of an application.

Prof. Kasim Al-Aubidy DERTS, MSc-2015 46

For more information:
1. R. Zurawski (ed). The Industrial Communication Systems Handbook. CRC

Press, 2005.

2. J. Liu. Real-Time Systems. Prentice-Hall, 2000.

3. Kopetz H.. Real-Time Systems: Design Principles for Distributed Embedded

Applications. Kluwer Academic, Publishers, 1997.

4. http://www.cs.ou.edu/~fagg/umass/classes/377f02/lectures.html

5. http://www.cs.umbc.edu/~younis/Real-Time/CMSC691S.html

