
DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 1

Lecture (7)

DERTS Design Requirements (3):

System Design Approach

Prof. Kasim M. Al-Aubidy

Philadelphia University

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 2

Lecture Outline:
 ERTS design: SoC and SoB.

 RT Embedded Technologies.

 System Features with RTOS.

 Why we use a RTOS?

 DERTS Programming Languages.

 Software Design.

 Describe and explain by examples the basic task synchronization

mechanisms.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 3

Embedded System Design:
ERT system is dealing with solving – real time constrains:

• Real time Response

– The system needs an immediate response – can even be in

magnitude order nano-seconds

– Asynchronous events can occur at any time.

• Race Conditions and Timing

– Buffers zone – limited size needs

 timed treatment.

– Mutual demand for resources.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 4

Embedded System Design:

• Size limitation:

– System on Chip (SoC) or System on Board (SoB) tends to be very

limited in space.

This forces many limitation on the processor in terms of

address lines number etc …

• Power Consumption:

– The power budget is very limited and extremely important

especially in mobile applications

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 5

Embedded System Design:

• Performance:

– The system performance is a key issue and must be kept in all

Circumstance.

– Performance is a major factor in choosing the processor, the clock

frequency , ram size , code size etc..

• Re-use:

– In many projects the system relies on already developed components,

which the designer must reuse. These components already have

embedded constrains in addition to the new system constraints.

• Recovering from Failures:

– Working in a distributed environment – connection failure.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 6

Real Time Design:

DERT system design concerns the following:

– Is the architecture suitable?

– Are the link speeds adequate?

– Are the processing components powerful enough?

– Is the Operating System suitable?

– What is the footprint - size of the code ?

– What is the required size of the RAM ?

– Could we keep the power budget ?

– What are the tools this processor has - the IDE ?

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 7

System On Chip (SoC):

The System On Chip consists of a few different block types inside the

same chip like:

 CPU: The main processor unit

 Memory devices: Volatile and non-volatile

 Internal bus interfaces and decoders

 Peripheral devices

 Digital/Analog functions

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 8

System On Board (SoB):

Full set of the necessary devices as standalone on the same board:

CPU: The main processor unit

Memory devices: Volatile and non-volatile

Internal bus interfaces and decoders

Peripheral devices

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 9

RT Embedded Technologies:

1. Platforms types:

• Firmware (SoC/SoB)

• Real-Time Operating System (RTOS)

2. Drivers technology.

The firmware systems

About 25% of the system are without OS.

The OS mechanism is not a must for this kind of usually simple

applications.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 10

Firmware Systems:

The main features of Firmware systems are;

 Small code size: (5-100k) per processor.

 Using only procedure level programming.

 Main Loop system.

 Drivers for communication and/or peripheral devices can hold a

major part of the system.

 The firmware can manage and control a single SOC, or can

control also devices on a full Board level.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 11

System with RTOS:

 The main features of systems with RTOS are;

Medium & Large code size (100k - 4m) per processor.

A system can hold several processors.

Using all programming levels.

RTOS includes :

• time base task scheduling

• mutual exclusion treatment

• task priority

• etc…

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 12

What is an Operating System:

An Operating System (OS) is a computer program that manages the

hardware and software resources of a computer

Operating system performs basic tasks such as:

– Controlling and allocating memory

– Prioritizing system requests

– Controlling input and output devices

– Facilitating networking

– Managing files

 In other words, it forms a platform for other software.

DERT System with RTOS:

 Drivers for communication and/or peripheral devices usually

hold a minor part of the system.

 The system with RTOS can reside on a system on chip (SOC)

or on a System On Board (SOB) at a full Board level

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 13

RT Embedded Technologies

Device Drivers:

• What are device drivers?

– Make the attached device work.

– Insulate the complexities involved in I/O handling.

Device Drivers’ Functionalities:

– Initialization

– Data access

– Data assignment

– Interrupt handling

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 14

DERT System Programming Languages:

Old Systems: include many parts in assembly language; processor

dependent language.

Current Systems: most real time systems are based on RTOS now,

written in the C language. Still, for crucial time tasks, Assembly code

may be required (e.g when cycle count is important).

Notes:

• Some Applications which have a lot of software, less real-time

oriented , but application business dependent , or which inherited

software base - are written using C++.

• Many applications have several programming languages mixed due

to real-time constrains or inherited code.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 15

Languages for DERT Systems:

1. Assembly Language:

– The assembly language is processor dependent.

– No reuse to other processors.

– Mastered by a limited number of programmers.

– Has all the known limitation of assembler:

 One C line – on average 5 assembly commands.

 Very hard to check and debug.

– Very efficient in terms of execution time and code size.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 16

Languages for DERT Systems:

2. The C Language:

– Is NOT processor dependent.

– Reuse to other processor is very common.

– Known to a very large number of programmers.

– Relatively easy to check and debug.

– Quite efficient in terms of execution time and code size.

– The compiler can include optimizers for using the processor

pipeline structure efficiently.

3. The C++ Language:

– C++ language is NOT processor dependent.

– Reuse to other processor is extremely common.

– Known to a very large number of programmers.

– Medium effort require for testing and debug.

– NOT efficient in terms of execution time and code size.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 17

Real-Time Systems Design:

The approach to the design of RTSs is no

different in outline from that required for any

DERT system. The work can be divided into

two main sections:

1. The planning phase, and

2. The development phase.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 18

1. Planning Phase:

• It is concerned with interpreting user requirements to produce a

detailed specification of the system to be developed and outline plan

of the resources, people, time, equipment and costs.

• At this stage preliminary decisions regarding the division of

functions between hardware and software will be made.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 19

2. Development Phase:

• The inputs to this stage are the HL specifications. During this stage extensive

liaison between hardware and software designers is needed.

• The detailed design is usually broken down into two stages;

– Decomposition into modules, and

– Module internal design.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 20

Specification Document:

Example: Hot-air blowers.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 21

Preliminary Design:

Hardware Design: to be discussed in lecture.

Software Design:

• The required software must perform several

functions:

– DDC for temperature control.

– Operator display.

– Operator input.

– Management information.

– System start-up and shut-down.

– Clock/calendar function.

• The control module has a hard constraint, it must run

every 40 msec.

• The clock/calendar module must run every 20 msec.

• The operator display has a hard constraint in that an

update interval of 5 sec is given.

• Soft constraints are adequate for operator i/p and for

the management information.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 22

Software Design:

• There are several different activities which can be

divided into sub-problems. The sub-problems will have

to share information. To achieve this, there are three

approaches:

1. Single-Program Approach:

• The modules are treated as procedures or subroutines of

a single program.

• This structure is easy to program, however, it imposes

the most severe of the time constraints.

Example: for the system to work the clock/calendar

module and any one of the other modules must complete

their operations within T. t1, t2, t3, t4 and t5 are the

maximum execution times for the given modules, then a

requirement for the system to work is;

Tttttt),,,max(54321

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 23

2. Foreground/Background System:

• There are advantages (less time constraints) if the
modules with hard time can be separated from, and
handled independently of, the modules with soft time
constraints or on constraints.

• The modules with hard time constraints are run in
“foreground” and the modules with soft constraints (or
no constraints) are run in the “background”.

• The partitioning into foreground and background
usually requires the support of a real-time OS.

• A requirement for the foreground part to work is that:

• A requirement for the background part to work is that;

• max(t3, t4, t5) is less than 10 sec.

• Display module runs on average every 5 sec, and

• Operator input responds in less than 10 sec.

Ttt 21

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 24

3. Multi-Tasking Approach:

• The design and programming of large RT systems is eased if the foreground/background

partitioning can be extended into multiple partitions to allow the concept of many active

tasks each can be carried out in parallel.

• The implementation of a multi-tasking system requires the ability to;

– Create separate tasks.

– Schedule running of the tasks on a priority basis.

– Share data between tasks.

– Synchronize tasks with each other and with external events.

– Prevent tasks corrupting each other.

– Control the starting and stopping of tasks.

• The facilities to perform the above actions are typically provided by a RTOS or a

combination of RTOS and a real-time programming language.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 25

Mutual Exclusion:

• Consider the transfer of information from i/p task to a control task. The i/p task gets the

values for the controller i/p parameters (gain, Ti and Td). From these it computes the

controller parameters (KP, KI, and KD) and these are transferred to the CONTROL task.

• A simple method is to hold the parameters values in an area of memory (common data

area) and hence is accessible to both tasks.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 26

For more information:
1. http://www.cs.ou.edu/~fagg/umass/classes/377f02/lectures.html

2. http://www.cs.umbc.edu/~younis/Real-Time/CMSC691S.htm#D

http://www.cs.ou.edu/~fagg/umass/classes/377f02/lectures.html
http://www.cs.ou.edu/~fagg/umass/classes/377f02/lectures.html
http://www.cs.ou.edu/~fagg/umass/classes/377f02/lectures.html
http://www.cs.ou.edu/~fagg/umass/classes/377f02/lectures.html
http://www.cs.ou.edu/~fagg/umass/classes/377f02/lectures.html
http://www.cs.umbc.edu/~younis/Real-Time/CMSC691S.htm
http://www.cs.umbc.edu/~younis/Real-Time/CMSC691S.htm
http://www.cs.umbc.edu/~younis/Real-Time/CMSC691S.htm
http://www.cs.umbc.edu/~younis/Real-Time/CMSC691S.htm
http://www.cs.umbc.edu/~younis/Real-Time/CMSC691S.htm

