
DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 1

Lecture (8)

DERTS Design Requirements (4):

Software Requirements

Prof. Kasim M. Al-Aubidy

Philadelphia University

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 2

Lecture Outline:
 Software Design.

 Program Development Tools.

 Pseudocode programming.

 Synchronization Methods

 Describe and explain by examples the basic task synchronization

mechanisms.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 3

Microcontroller Programming:
• MCs have traditionally been programmed using the assembly language of the

target device. As a result, the assembly languages of the microcontrollers
manufactured by different firms are totally different and the user has to learn a
new language before being able program a new type of device.

• MCs can be programmed using high level languages such as BASIC, and C.

HLL Advantages:

High-level languages offer several advantages compared to the assembly language:

It is easier to develop programs using a high-level language.

• Program maintenance is much easier if the program is developed using a high-
level language.

• Testing a program developed in a high-level language is much easier.

• High-level languages are more user-friendly and less prone to making errors.

• It is easier to document a program developed using a high-level language.

HLL Disadvantages:

• The length of the code in memory is usually larger when a high-level language is
used.

• The programs developed using the assembly language usually run faster than
those developed

• using a high-level language.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 4

Software Requirements for DERT Systems:

• Computer hardware is nowadays very fast, and control computers
are generally programmed using a high-level language. The use of
the assembly language is reserved for very special and time-critical
applications, such as fast, real-time device drivers.

• C is a popular language used in most computer control applications.
It is a powerful language that enables the programmer to perform
low-level operations, without the need to use the assembly
language.

• The software requirements in DERT systems are as follows:
– the ability to read data from input ports;

– the ability to send data to output ports;

– internal data transfer and mathematical operations;

– timer interrupt facilities for timing the controller algorithm.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 5

Software Requirements:

• The following software products will be required during system

development;

 - Program development software (editor): to write the program code.

 - MC assembler or compiler: to produce object code.

 - MC device programmer software: to transfer the object code to the

program memory of the MC.

• Depending on the complexity of the project, additional software

products, such as simulators, debuggers or in-circuit emulators, can

be used to test and verify the operation of a program.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 6

Program Development Tools:

1. Flowcharts: are only useful for small applications.

Disadvantages of flow charts:

- The drawing and modifying the diagrams can be very time-

consuming.

- They tend to produce unstructured code which is very difficult to

maintain.

2. Structure charts: are similar to flow charts but are easier to draw

and modify. Structure charts also tend to produce well-structured

code which is easy to understand and maintain.

The three basic operations of sequence, selection and iteration are

shown differently using structure.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 7

Sequencing using structure charts:

- Sequence is shown with rectangles drawn next to each other.

- The sequence of operations is from left to right.

Example:

First the I/O port is initialized, then the LED is turned on, and finally

the LED is turned off after a 5 s delay.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 8

Selection using structure charts:

Selection is shown by placing a small circle at

the top right-hand side of a rectangle.

Example:

if condition1 is true then process B is performed,

and if condition2 is true process C is performed.

Iteration using structure charts:

Iteration is shown by placing an asterisk sign at

the top right-hand side of a rectangle.

Example:

Processes B and C are repeated.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 9

3. Pseudocode Method:

• Pseudocode is a kind of structured English for describing the

operation of algorithms.

• It allows the programmer to concentrate on the development of the

algorithm independent of the details of the target language.

• It is based on the concept that any program consists of three major

items: sequencing, selection, and iteration.

• It is then developed using English sentences to describe

algorithms, and this code cannot be compiled.

BEGIN–END

This construct is used to declare the beginning and end of a program

or module. Keywords such as ‘:MAIN’ can be used before BEGIN to

declare the beginning of the main program:

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 10

Sequencing:

• A sequence is a linear progression where the tasks are performed

sequentially one after the other.

• Each action should be written on a new line and all the actions should be

aligned with the same indent.

• These keywords can be used for the description of the algorithm:

Input: READ, GET, OBTAIN

Output: SEND, PRINT, DISPLAY, SHOW

Initialize: SET, CLEAR, INITIALIZE

Compute: ADD, CALCULATE, DETERMINE

Actions: TURN ON, TURN OFF

Example:
:MAIN

BEGIN

Read three numbers

Calculate their sum

Display the result

END

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 11

IF-THEN-ELSE-ENDIF:

These keywords can be used to indicate that a decision is to be made.

The general format of this construct is:
IF condition THEN

statement

statement

ELSE

statement

statement

ENDIF
Example:

IF temperature > 100 THEN

Turn off heater

Start the engine

ELSE

Turn on heater

ENDIF

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 12

REPEAT–UNTIL

This construct is used to specify a loop where the test is performed at the end

of the loop. The loop continues forever if the condition is not satisfied.

The general format is:

REPEAT

Statement

Statement

UNTIL condition

Example:

Set counter = 0

REPEAT

Turn on LED

Wait 1 s

Turn off LED

Wait 1 s

Increment counter

UNTIL counter = 5

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 13

DO–WHILE

This construct is similar to REPEAT–UNTIL, but here the loop is executed

while the condition is true. The condition is tested at the end of the loop.

The general format is:

DO

statement

statement

statement

WHILE condition

Example:

Set counter = 0

DO

Turn on LED

Wait 1 s

Turn off LED

Wait 1 s

Increment counter

WHILE counter < 5

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 14

WHILE–WEND

This construct is similar to REPEAT–UNTIL, but here the loop may never

be executed, depending on the condition. The condition is tested at the

beginning of the loop.

The general format is:

WHILE condition

statement

statement

statement

WEND

Example: the loop is never executed:

I = 0

WHILE I > 0

Turn on LED

Wait 3 s

WEND

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 15

CASE–CASE ELSE–ENDCASE

The CASE construct is used for multi-way branch operations. An expression

is selected and, based on the value of this expression, a number of mutually

exclusive tests can be done and statements can be executed for each case.

The general format of this construct is:

CASE expression OF

condition1:

statement

statement

condition2:

statement

Statement

. . .

CASE ELSE

Statement

Statement

END CASE

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 16

Example:

CASE grade OF

A: points = 10

B: points = 8

C: points = 6

D: points = 4

CASE ELSE points = 0

END CASE

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 17

Calling Modules:

Modules can be called using the CALL keyword and then specifying the

name of the module.

It is useful if the input parameters to be passed to the module are specified

when a module is called. Similarly, at the header of the module description

the input and the output parameters of a module should be specified. An

example is given below.

Example:

Write the pseudocode for an application where three numbers are read from

the keyboard into a main program, their sum calculated using a module

called SUM, and the result displayed by the main program.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 18

Synchronization Methods:

• One of the important features of real-time algorithms is that once they
have been started they run continuously until some event occurs to stop
them or until they are stopped manually by an operator.

• It is important to make sure that the loop is run continuously and exactly
at the same times. This is called synchronization and there are several
ways in which synchronization can be achieved in practice, such as:

– using polling in the control algorithm;

– using external interrupts for timing;

– using timer interrupts;

– ballast coding in the control algorithm;

– using an external real-time clock.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 19

Synchronization Methods:
1. Using Polling:
• Polling is the software technique where we keep waiting until a certain event

occurs, and only then perform the required actions. This way, we wait for the
next sampling time to occur and only then run the controller algorithm.

• The polling technique is used in DDC applications since the controller cannot do
any other operation during the waiting of the next sampling time.

• The polling technique is described below as a sequence of steps:

Repeat Forever
While Not sampling time
Wait
End
 Read the desired value, R
 Read the actual plant output, Y
 Calculate the error signal, E = R − Y
 Calculate the controller output, U
 Send the controller output to D/A converter
End

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 20

2. Using External Interrupts for Timing:
• The controller synchronization task can easily be performed using an external

interrupt.

• The controller algorithm can be written as an interrupt service routine (ISR).

• The external interrupt will typically be a clock with a period equal to the required
sampling time. Thus, the computer will run the ISR at every sampling instant.

• At the end of the ISR control is returned to the main program where the program
either waits for the occurrence of the next interrupt or can perform other tasks
(e.g. displaying data on a LCD) until the next external interrupt occurs.

• The external interrupt approach provides accurate implementation of the control
algorithm as far as the sampling time is concerned.

• One drawback of this method is that an external clock is required to generate the
interrupt pulses.

• The external interrupt technique has the advantage that the controller is not
waiting and can perform other tasks in between the sampling instants.

• The external interrupt technique of synchronization is described below as a
sequence of steps:

Main program:

Wait for an external interrupt (or perform some other tasks)

End

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 21

• Interrupt service routine (ISR):

 Read the desired value, R

 Read the actual plant output, Y

 Calculate the error signal, E = R − Y

 Calculate the controller output, U

 Send the controller output to D/A converter

Return from interrupt

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 22

3. Using Timer Interrupts:
• Another popular way to perform controller synchronization is to use the timer interrupt

available on most microcontrollers.

• The controller algorithm is written inside the timer ISR, and the timer is programmed to
generate interrupts at regular intervals, equal to the sampling time.

• At the end of the algorithm control returns to the main program, which either waits for the
occurrence of the next interrupt or performs other tasks (e.g. displaying data on an LCD)
until the next interrupt occurs.

• The timer interrupt approach provides accurate control of the sampling time. Another
advantage of this technique is that no external hardware is required since the interrupts are
generated by the internal timer of the microcontroller.

• The timer interrupt technique of synchronization is described as a sequence of steps:

Main program:

Wait for a timer interrupt (or perform some other tasks)

End
Interrupt service routine (ISR):

 Read the desired value, R

 Read the actual plant output, Y

 Calculate the error signal, E = R − Y

 Calculate the controller output, U

 Send the controller output to D/A converter

Return from interrupt

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 23

4. Using Ballast Coding:
• In this technique the loop timing is made to be independent of any external or internal

timing signals. The method involves finding the execution time of each instruction inside
the loop and then adding dummy code to make the loop execution time equal to the
required sampling time.

• This method has the advantage that no external or internal hardware is required. But one
big disadvantage is that if the code inside the loop is changed, or if the CPU clock rate of
the MC is changed, then it will be necessary to readjust the execution timing of the loop.

• The ballast coding technique of synchronization is described below as a sequence of
steps. Here, it is assumed that the loop timing needs to be increased and some dummy
code is added to the end of the loop to make the loop timing equal to the sampling time:

Do Forever:

 Read the desired value, R

 Read the actual plant output, Y

 Calculate the error signal, E = R − Y

 Calculate the controller output,U

 Send the controller output to D/A converter

Add dummy code

. . .

. . .

Add dummy code

End

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 24

5. Using an External Real-Time Clock:
• Some RT clock hardware is attached to the MC where the clock is updated at every tick. The RT

clock is then read continuously and checked against the time for the next sample. Immediately on
exiting from the wait loop the current value of the time is stored and then the time for the next sample
is updated by adding the stored time to the sampling interval. Thus, the interval between the
successive runs of the loop is independent of the execution time of the loop. Although the external
clock technique gives accurate timing, it has the disadvantage that RT clock hardware is needed.

• The external RT clock technique of synchronization is described below as a sequence of steps. T is
the required sampling time in ticks, which is set to n at the beginning of the algorithm. For example,
if the clock rate is 50 Ticks per second, then a Tick is equivalent to 20 ms, and if the required
sampling time is 100 ms, we should set T = 5:

T = n
Next Sample Time = Ticks + T
Do Forever:
While Ticks < Next Sample Time
Wait
End
Current Time = Ticks
 Read the desired value, R
 Read the actual plant output, Y
 Calculate the error signal, E = R − Y
 Calculate the controller output, U
Send the controller output to D/A converter
 Next Sample Time=Current Time + T
End

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 25

Software Requirements for DERT Systems:

• Computer hardware is nowadays very fast, and control computers are generally
programmed using a high-level language. The use of the assembly language is
reserved for very special and time-critical applications, such as fast, real-time
device drivers.

• C is a popular language used in most computer control applications. It is a
powerful language that enables the programmer to perform low-level operations,
without the need to use the assembly language.

• The software requirements in real-time systems can be summarized as follows:

– the ability to read data from input ports;

– the ability to send data to output ports;

– internal data transfer and mathematical operations;

– timer interrupt facilities for timing the controller algorithm.

• All of these requirements can be met by most digital computers, and, as a result,
most computers can be used as controllers in digital control systems.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 26

Program Development Process:

• The programmer writes the program, called the
source code, in Assembler language.

• This is then assembled by the Cross-Assembler
running on the host computer. The designer may
choose to test the program by simulation. This is
likely to lead to program.

• When satisfied with the program, the developer
will then download it to the program memory of
the microcontroller itself, using either a stand-
alone ‘programmer’ linked to the host computer
or a programming facility designed into the
embedded system itself.

• The designer will then test the program running
in the actual hardware. Again, this may lead to
changes being required in the source code.

• To develop a simple project, a selection of
different software tools is beneficial. These are
usually bundled together into what is called an
Integrated Development Environment (IDE),
such as PROTUS and MPLAB.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 27

Example:

Software design using

flowcharts.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 28

Example:

Software design using

State diagrams.

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 29

Assignment:
1. What are the differences between a flow chart and a structure chart?

2. What are the three major components of a structure chart? Explain the

function of each component with an example.

3. Draw a flow chart to show how a fixed-time delay can be generated?

4. What are the advantages of pseudocode?

5. What are the basic components of pseudocode?

6. Write pseudocode to read the base and the height of a triangle from the

keyboard, call a module to calculate the area of the triangle and display

the area in the main program.

7. Explain how iteration can be done in pseudocode. Give an example?

8. Give an example of pseudocode to show how multi-way selection can

be done using the CASE construct? Write the equivalent IF–ELSE–

ENDIF construct?

DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 30

For more information:
1. Dogan Ibrahim, “Microcontroller Based Applied Digital Control”, J.Wiley,

England, 2006. ISBN 0-470-86335-8.

2. http://www.cs.ou.edu/~fagg/umass/classes/377f02/lectures.html

3. http://www.c.s.umbc.edu/~younis/Real-Time/CMSC691S.htm#D

http://www.cs.ou.edu/~fagg/umass/classes/377f02/lectures.html
http://www.cs.ou.edu/~fagg/umass/classes/377f02/lectures.html
http://www.cs.ou.edu/~fagg/umass/classes/377f02/lectures.html
http://www.cs.ou.edu/~fagg/umass/classes/377f02/lectures.html
http://www.cs.ou.edu/~fagg/umass/classes/377f02/lectures.html
http://www.cs.ou.edu/~fagg/umass/classes/377f02/lectures.html
http://www.c.s.umbc.edu/~younis/Real-Time/CMSC691S.htm
http://www.c.s.umbc.edu/~younis/Real-Time/CMSC691S.htm
http://www.c.s.umbc.edu/~younis/Real-Time/CMSC691S.htm
http://www.c.s.umbc.edu/~younis/Real-Time/CMSC691S.htm
http://www.c.s.umbc.edu/~younis/Real-Time/CMSC691S.htm

