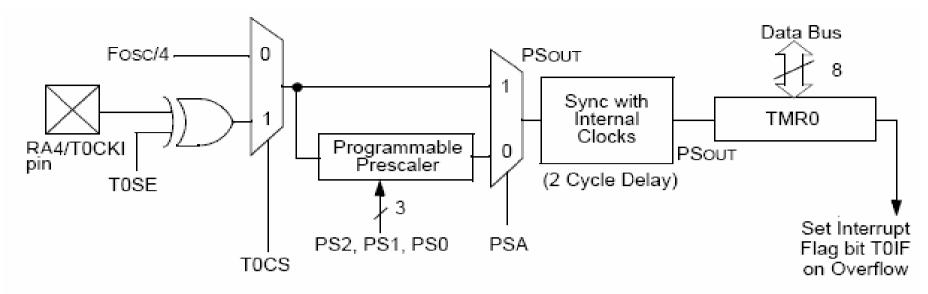


Embedded Systems Design (630470)

Lecture 10

Timer/Counter Module

Prof. Kasim M. Al-Aubidy


Computer Eng. Dept.

TIMER0 MODULE

- The Timer0 module timer/counter has the following features:
 - 8-bit timer/counter
 - Readable and writable
 - Internal or external clock select
 - Edge select for external clock
 - 8-bit software programmable prescaler
 - Interrupt-on-overflow from FFh to 00h
- Timer0 can operate as a timer or as a counter.
- Timer mode is selected by clearing bit T0CS (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler).
- Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI.

Prescaler

- An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer.
- The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.
- Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable.
- Setting bit PSA will assign the prescaler to the Watchdog Timer (WDT). When the prescaler is assigned to the
- WDT, prescale values of 1:1, 1:2, ..., 1:128 are selectable.
- When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1,etc.) will clear the prescaler.
- When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT

Note: T0CS, T0SE, PSA, PS2:PS0 (OPTION_REG<5:0>).

OPTION REGISTER (ADDRESS 81h)

R/W	-1	R/W-1	R/W-1	R/W-1	R/W-1	R	R/W-1		R/W-1		V-1
RBP	υ	INTEDG	TOCS	TOSE	PSA	I	PS2	PS1		PS	\$0
bit 7					-	-					bit 0
					Bit Va	alue	TMR0	Rate	WDT	Rate	
bit 7	RB	PU: PORTB	Pull-up Ena	ble bit	00	000		1:2		1:1	
bit 6	INT	EDG: Interru	upt Edge Se	0.0	001		1:4		1:2		
bit 5		S: TMR0 C			010		1:8		1:4		
bit 4		E: TMR0 So		01	011		1:16		1:8		
bit 3	PS/	A: Prescaler	Assignmen	t bit	10	100		1:32		1:16	
bit 2-0	PS2	2:PS0: Pres	caler Rate S	elect bits	10	101		1:64		1:32	
				11	110		1:128		64		
					11	111		1:256		1:128	

Timer0 Interrupt

- The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>).
- The interrupt can be masked by clearing bit T0IE (INTCON<5>).
- Bit T0IF must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt.
- The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut-off during SLEEP.

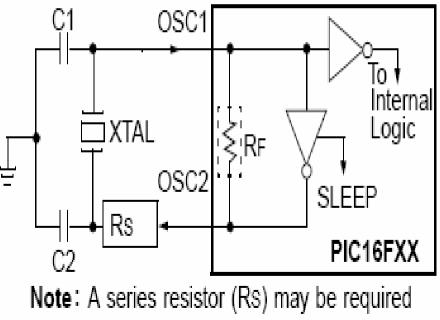
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
01h	TMR0	Timer0 Module Register									
0Bh,8Bh	INTCON	GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF		
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0		
85h	TRISA	_	_	_	PORTA Data Direction Register						

REGISTERS ASSOCIATED WITH TIMER0

Configuration Bits

- The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations.
- These bits are mapped in program memory location 2007h.
- Address 2007h is beyond the user program memory space and it belongs to the special test/configuration memory space (2000h - 3FFFh). This space can only be accessed during programming.

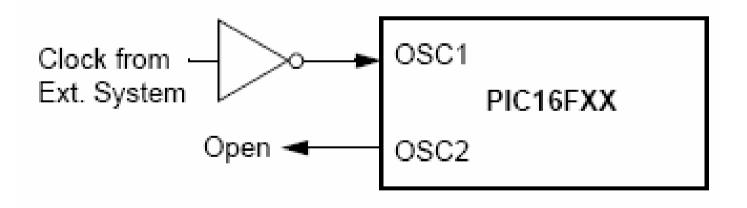
PIC16F84A CONFIGURATION WORD


R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u	
CP	CP	CP	CP	CP	CP	CP	CP	CP	CP	PWRTE	WDTE	F0SC1	F0SC0	
bit13													bit0	
bit	bit 13-4 CP: Code Protection bit 1 = Code protection disabled 0 = All program memory is code protected								WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled					
bi	bit 3 PWRTE : Power-up Timer Enable bit 1 = Power-up Timer is disabled 0 = Power-up Timer is enabled						bit 1-0	FOSC1:FOSC0: Oscillator Selection bits 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator						

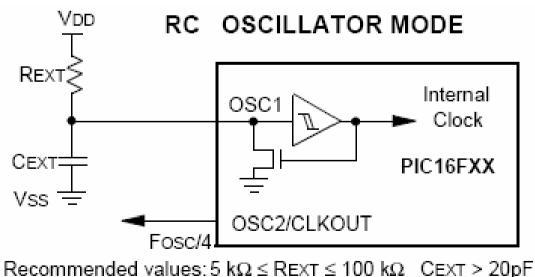
Oscillator Configurations OSCILLATOR TYPES:

- The PIC16F84A can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:
 - LP Low Power Crystal
 - XT Crystal/Resonator
 - HS High Speed Crystal/Resonator
 - RC Resistor/Capacitor

CRYSTAL OSCILLATOR/ CERAMIC RESONATORS


In XT, LP, or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation

for AT strip cut crystals.


EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

 The PIC16F84A oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP, or HS modes, the device can have an external clock source to drive the OSC1/CLKIN pin

RC OSCILLATOR

- For timing insensitive applications, the RC device option offers additional cost savings.
- The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) values, capacitor (CEXT) values, and the operating temperature.
- The oscillator frequency will vary from unit to unit due to normal process parameter variation.
- The difference in lead frame capacitance between package types also affects the oscillation frequency, especially for low CEXT values.
- The user needs to take into account variation, due to tolerance of the external R and C components.

