Philadelphia University Course Outline

Course Title : EMBEDDED SYSTEMS DESIGN (630470)
Prerequisite : Microprocessors (630371)

Text Book: An Introduction to the design of small-scale Embedded Systems. By:

Tim Wilmshurst, Palgrave, UK, 2004. ISBN:0-333-92994-2

Credit Hours: 3 Level: 4th year Instructor: Prof. Kasim M. Al-Aubidy, Room: 716
Semester: Summer 2015/2016 Time:8:00-9:00 (Sunday to Thursday)

Office Hours: 14:00-15:00 (Monday & Wednesday)

Course Goals:

To cover the principles and design methods of embedded computer systems. It covers the principles of single chip microcomputers, interfacing techniques and microprocessor-based system realization.

Time Schedule:

Duration: 16 weeks Lectures: 3 hours /week

Tutorial: Non Laboratories: Non

Objectives:

At Completing this module the student should be able to:

- 1- Understand the operation of embedded systems
- 2- Design and implement embedded systems
- **3-** Modify the performance of embedded systems

week	Course Contents	Tasks
1	Introduction to embedded systems, Microcontroller Architecture.	Project Selection
2	Microcontroller Operation, Programming: Instruction set, Program	HW1
	Developing.	ΠWI
3	Microcontroller Programming: Timing and Subroutines.	
4	Microcontroller Input/Output Interfacing; digital, analog, pulses.	HW2
5	Keypad Interfacing. LCD Interfacing	HW3
6	Serial Interfacing, ESD using single board.	Project (Phase1)
7	Embedded Systems and Wireless Sensor Networks.	
8	MiniProjects Design using single-chip microcontrollers	Project (Phase2)

Mode of Assessment			
1.	First Exam	20%	
2.	Second Exam	20%	
3.	Quizzes	10%	
4.	Projects	10%	
5.	Final Exam	40%	

References

- Raj Kamal, "Embedded Systems: Architecture, Programming & Design", 1st edition, 2007, McGraw Hill, USA 2007.
- **2.** Frank Vahid and Tony Givargis, "Embedded System Design: A Unified Hardware/Software Introduction" John Wiley & Sons, 2002.
- **3.** Joan Peatman, "Embedded Systems Design with the PIC18F452 microcontroller", Prentice-Hall, USA 2003.
- **4.** Stuart R. Ball, "Embedded Microprocessor Systems: Real World Design", 2nd edition, Newton, Mass. USA, 2002.
- 5. Steven Heath, "Embedded Systems Design", 2nd edition, Newton, Mass. USA, 2002.
- 6. http://romux.com/tutorials/pic-tutorial/central-processing-unit

Philadelphia University Course Outline

Philadelphia University Faculty of Engineering

Embedded Systems Design (630470)

Summer Semester 2015/2016 Projects

- Project 1: Keypad Interfacing and Programming.
- Project 2: Liquid Crystal Display (LCD) Interfacing.
- Project 3: Analog Input/Output Interfacing.
- Project 4: Calendar Design and Programming.
- Project 5: Serial Input/Output Interfacing.
- Project 6: Temperature Monitoring and Control.
- Project 7: Pulse Width Modulation (PWM) Signal Generation.
- Project 8: Stepper Motor Control.
- Project 9: DC Motor Control.
- Project 10: Speed and Position Measurement of a Rotating Shaft.
- Project 11: Alarm System Design and Applications.
- Project 12: Waveforms Generator Design.
- Project 13: Digital Voltmeter Design.
- Project 14: Fuzzy Logic Based Security System Design.
- Project 15: Data Acquisition System Design.
- Project 16: Design and Implementation of an Office Monitoring System.
- Project 17: Microcontroller-Based Real-Time Algorithm Implementation.
- Project 18: FPGA-Based Embedded System Design.
- Project 19: Design and Implementation of a Programmable Casher Unit.
- Project 20: Design and Implementation of an Elevator Controller.

Instructor: Prof. Kasim Alaubaidy