

Embedded Systems Design (630414)

Lecture: 5-6 PIC Instruction Set

Prof. Kasim M. Al-Aubidy Computer Eng. Dept.

Instruction Set in PIC16Cxx MC Family

- Complete set: 35 instructions.
- MC Architecture: RISC microcontroller.
- Instruction Types:
- 1. Data Processing Operations:
 - Copy data between registers.
 - Manipulate data in a single register.
 - Arithmetic operations.
 - Logic operations.

2. Program Sequence Control Operations:

- Unconditional Jump.
- Conditional Jump.
- Call.
- Control.

Word list

- f any memory location in a microcontroller
- W work register
- **b** bit position in 'f' register
- d destination bit
- *label* group of eight characters which marks
- the beginning of a part of the program
- **TOS** top of stack
- [] option
- <> bit position inside register

Example:

Data transfer

Transfer of data in a MC is done between W register and an 'f' register.

Mnemor	ic	Description	Operation	Fleg	Cycle	Notes
		Data transfer			-	
MOVEW	k	Move constant to W	$k \rightarrow W$		1	
MOVWF	f	Move VV to f	$W \rightarrow f$		1	
MOVF	f, d	Move f	$f \rightarrow d$	Z	1	1,2
CLRW	-	Clear W	0 → W	Z	1	
CLRF	f	Clear f	$0 \rightarrow f$	Z	1	2
SWAPF	f, d	Swap nibbles in f	f(7:4), (3:0) → f(3:0),(7:4)		1	1,2

These instructions provide for:

- a constant being written in W register (MOVLW)
- data to be copied from W register onto RAM.

- data from RAM to be copied onto W register (or on the same RAM location, at which point only the status of Z flag changes).

-Instruction CLRF writes constant 0 in 'f ' register,

- Instruction CLRW writes constant 0 in register W.
- SWAPF instruction exchanges places of the 4-bit nibbles field inside a register.

Arithmetic and logic

PIC like most MCs supports only subtraction and addition.

Flags C, DC and Z are set depending on a result of addition or subtraction.

Logic unit performs AND, OR, EX-OR, complement (COMF) and rotation (RLF & RRF).

		Arritmetic and logic				
ADDLW	k	Add constant and W	$W+1 \rightarrow W$	C,DC,Z	1	
ADDWF	f, d	Add W and f	$W+f \rightarrow d$	C,DC,Z	1	1,2
SUBLW	k	Subtract W from constant	$W-k \rightarrow W$	C,DC,Z	1	
SUBWF	f, d	Subtract W from f	W-f→d	C,DC,Z	1	1,2
ANDLW	k	AND constant with W	$W.AND.k \rightarrow W$	Z	1	
ANDWF	f, d	AND W with f	W.AND.f→d	Z	1	1,2
IORLW	k	OR constant with W	$W.OR.k \rightarrow W$	Z	1	
IORWF	f, d	ORW with f	W.OR.f→d	Z	1	1,2
XORLW	k	Exclusive OR constant with W	$W.XOR.k \rightarrow W$	Z	1	1,2
XORWF	f, d	Exclusive OR W with f	W.XOR.f→d	Z	1	
INCF	f, d	Increment f	f+l → f	Z	1	1,2
DECF	f, d	Decrement f	$f-1 \rightarrow f$	Z	1	1,2
RLF	f, d	Rotate Left f trough carry		С	1	1,2
RRF	f, d	Rotate Right f trough carry		С	1	1,2
COMF	f, d	Complement f	F→d	Z	1	1,2

Bit operations

Instructions BCF and BSF do setting or cleaning of one bit anywhere in the memory. The CPU first reads the whole byte, changes one bit in it and then writes in the entire byte at the same place.

Bit operations

BCF	f,b	Bit Clear f	$0 \rightarrow f(b)$	1	1,2
BSF	f,b	Bit Set f	$l \rightarrow f(b)$	1	1,2

Directing a program flow

- Instructions GOTO, CALL and RETURN are executed the same way as on all other microcontrollers, only stack is independent of internal RAM and limited to eight levels.
- 'RETLW k' instruction is identical with RETURN instruction, except that before coming back from a subprogram a constant defined by instruction operand is written in W register.

BTFSC	f, b	Bit Test f, Skip if Clear	jump it f(b)=0	1 (2)	3
BTFSS	f, b	Bit Test f, Skip if Set	jump it ք(Ն)=1	1 (2)	3
DECFSZ	f, d	Decrement f, Skip if 0	f-1 \rightarrow d, jump if Z=1	1(2)	1,2,3
INCFSZ	f, d	Increment f, Skip if 0	f+l → d, jump ifZ=0	1(2)	1,2,3
GOTO	k	Go to address	$W.AND.k \rightarrow W$	2	
CALL	k	Call subroutine	W.AND.f→d	2	
RETURN	-	Return from Subroutine	$W.OR.k \rightarrow W$	2	
RETLW	k	Return with constant in W	W.OR.f→d	2	
RETFIE	-	Return from interrupt	$W.XOR.k \rightarrow W$	2	

Directing a program flow

Look-up tables Design:

- This instruction 'RETLW k' enables us to design easily the Look-up tables (lists).
- We use them by determining data position on our table adding it to the address at which the table begins, and then we read data from that location (which is usually found in program memory).

•Table can be formed as a subprogram which consists of a series of 'RETLW k' instructions, where 'k' constants are members of the table.

•We write the position of a member of our table in W register, and using CALL instruction to call a subprogram which creates the table.

• The instruction ADDWF PCL, f adds the position of a W register member to the starting address of our table, found in PCL register, and so we get the real data address in program memory.

•When returning from a subprogram we will have in W register the contents of an addressed table member.

Main molov 2 call Lookup Lookup addwf PCL, f retlw k retlw k1 : : : retlw k2

N	NOP	-	No Operation			1	
	CLRWDT	-	Clear Watchdog Timer	0→WDT,→TO,1→PD	TO, PD	1	
S	SLEEP	-	Go into standby mode	0→WDT,HTO,0→PD	TO, PD	1	

Other instructions

Instruction Execution Period

All instructions are executed in one cycle except for conditional branch instructions if condition was true, or if the contents of program counter was changed by some instruction. In that case, execution requires two instruction cycles, and the second cycle is executed as NOP (No Operation). Four oscillator clocks make up one instruction cycle. If we are using an oscillator with 4MHz frequency, the normal time for executing an instruction is 1 µs, and in case of conditional branching, execution period is 2 µs.

Syntax: Description: Operation: Operand: Flag: Number of words: Number of cycles:		•	1
Example 1 MOVLY	N O×5A		OPTION_REG=0×20 W=0×40 OPTION_REG=0×40 W=0×40
After instruction:	W=O×5A	Example 2 MOVW	
Example 2 MOVLY	N REGISTAR	Before instruction:	W=0×17 FSR=0×C2
	W=0×10 and REGISTAR=0×40 W=0×40	After instruction:	address contents 0×C2=0×00 W=0×17 FSR=0×C2 address contents 0×C2=0×17

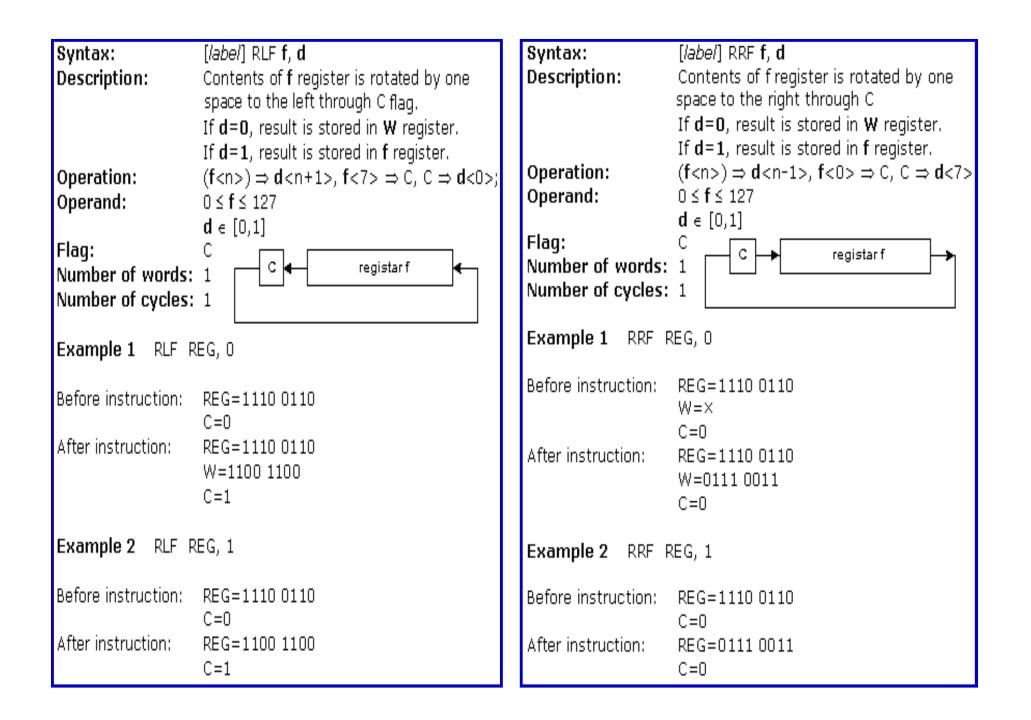
Syntax: Description:	[<i>label</i>] MOVF f , d Contents of f register is stored in location determined by d operand. If d=0 , destination is W register. If d=1 , destination is f register itself. Option d=1 is used for testing the contents of f register because execution of this instruction affects Z flag in STATUS register.
Operation: Operand:	$ \begin{aligned} \mathbf{f} &\Rightarrow (\mathbf{d}) \\ 0 &\leq \mathbf{f} \leq 127 \\ \mathbf{d} \in [0, 1] \end{aligned} $
Flag: Number of words: Number of cycles:	Z 1
Example 1 MOVF	FSR, O
Before instruction:	FSR=0×C2 W=0×00
After instruction:	W=0×C2 Z=0
Example 2 MOVF	INDF, O
Before instruction:	W=0×17 FSR=0×C2 address contents 0×C2=0×00
After instruction:	W=0×17 FSR=0×C2 address contents 0×C2=0×00 Z=1

Syntax: Description:	[<i>label</i>] MOVF f , d Contents of f register is stored in location determined by d operand. If d=0 , destination is W register. If d=1 , destination is f register itself. Option d=1 is used for testing the contents of f register because execution of this instruction affects Z flag in STATUS register.
Operation: Operand: Flag:	$ \begin{aligned} \mathbf{f} &\Rightarrow (\mathbf{d}) \\ 0 &\leq \mathbf{f} \leq 127 \\ \mathbf{d} &\in [0,1] \\ Z \end{aligned} $
Number of words: Number of cycles:	1
Example 1 MOVF	FSR, O
Before instruction:	FSR=0×C2 W=0×00
After instruction:	W=0×C2 Z=0
Example 2 MOVF	INDF, O
Before instruction:	W=0×17 FSR=0×C2 address contents 0×C2=0×00
After instruction:	W=0×17 FSR=0×C2 address contents 0×C2=0×00 Z=1

Syntax: Description:	[<i>label</i>] CLRW Contents of W reqister evens out to zero, and Z flag in STATUS register is set to one.	Syntax: Description:	[<i>label</i>] CRLF f Contents of ' f ' register evens out to zero, and Z flag in status register is set to one.
Operation: Operand: Flag: Number of words: Number of cycles:	1	•	
Example CLRW		Example 1 CRLF	STATUS
Before instruction: After instruction:	W=0×55 W=0×00 Z=1 Z=1	Before instruction: After instruction:	
Example 2 CLRF	INDF	Example 2 CLRF	INDF
Before instruction: After instruction:	FSR=0×C2 address contents 0×C2=0×33 FSR=0×C2 address contents 0×C2=0×00 Z=1	Before instruction: After instruction:	FSR=0×C2 address contents 0×C2=0×33 FSR=0×C2 address contents 0×C2=0×00 Z=1

Syntax: Description:	[<i>label</i>] SWAPF f , d Upper and lower half of f register exchange places. If d=0 , result is stored in W register. If d=1 , result is stored in f register.
Operation: Operand: Flag: Number of words: Number of cycles:	
Example 1 SWAP	REG, O
Before instruction: After instruction:	REG=0×F3 REG=0×F3 W=0×3F
Example 2 SWAP	REG, 1
Before instruction: After instruction:	

Syntax: Description:	[<i>label</i>] ADDLW k Contents of W register is added to 8-bit constant k and result is stored in W register.	Syntax: Description:	[<i>label</i>] ADDWF f , d Add contents of register W to register f . If d=0 , result is stored in W register. If d=1 , result is stored in f register.
Operation:	$(W) + k \Rightarrow W$	Operation:	$(W) + (f) \Rightarrow d$
Operand:	0 ≤ k ≤ 255	Operand:	d ∈ [0,1] 0 ≤ f ≤ 127
	C, DC, Z	•	C, DC, Z
Number of words:	• •	Number of words:	
		Number of cycles:	1
Number of cycles	. 1		
		Example 1 ADDW	F FSR, O
Example 1 ADDL	W O×15	Before instruction:	
Defere instruction.	M-0×10	After instruction:	FSR=0×C2
Before instruction:		After instruction:	FSR=0×C2
After instruction:	W=0×25		138-6462
		Example 2 ADDLV	V INDF, 1
Example 2 ADDL	W REG	Before instruction:	W=0×17
		before instruction:	FSR=0×C0
Before instruction:	W=0×10		address contents 0×C2=0×20
	register contents REG=0×37	After instruction:	W=0×17
d fter instruction.	•		FSR=0×C2
After instruction:	W=0×47		address contents 0×C2=0×37


Syntax: Description: Operation:	[<i>label</i>] SUBLW k Contents of W register is s k constant, and result is st k - (W) ⇒ W		Syntax: Description:	[<i>label</i>] SUBWF f , d Contents of W register is sub the contents of f register.	tracted from
Operand: Flag: Number of words: Number of cycles:	0 ≤ k ≤ 255 C, DC, Z 1		Operation: Operand:	If $d=0$, result is stored in W If $d=1$, result is stored in f result is stored in f result $(f) - (W) \Rightarrow d$ $0 \le f \le 127$	-
Example 1 SUBLY	₩ 0×03		Flag:	d ∈ [0,1] C, DC, Z	
Before instruction: After instruction:	W=0×01, C=×, Z=× W=0×02, C=1, Z=0	Result > 0	Number of words: Number of cycles:		
Before instruction: After instruction:	W=0×03, C=×, Z=× W=0×00, C=1, Z=1	Result = 0	Example 1 SUBW	F REG,1	
Before instruction: After instruction:	W=0×04, C=×, Z=× W=0×FF, C=0, Z=0	Result < 0	Before instruction: After instruction:	REG=3, W=2, C=X, Z=X REG=1, W=2, C=1, Z=0	Result > 0
Example 2 SUBLY	N REG		Before instruction: After instruction:	REG=2, W=2, C=×, Z=× REG=0, W=2, C=1, Z=1	Result = 0
Before instruction: After instruction:	W=0×10 contents REG=0×37 W=0×27 C=1	Result > 0	Before instruction: After instuction:	REG=1, W=2, C=X, Z=X REG=0XFF, W=2, C=0, Z=0	Result < 0

Syntax: Description:	contents of	LW k peration logic . W register an pred in W regi	d constant k .	Syntax: Description:	[<i>label</i>] ANDWF f , d Performs operation of logic AND over the contents of W and f registers. If d=0 , result is stored in W register.	
Operation: Operand: Flag: Number of words: Number of cycles:	(₩) .AND. 0 ≤ k ≤ 255 Z 1	k⇒W		Operand:	d ∈ [0,1] Z 5: 1	
Example 1 ANDLV	V O×5F			Example 1 AND		
Before instruction: After instruction:		; 0101 1111 ; 1010 0011 ; 0000 0011	(O×A3) 		W=0×17, FSR=0×C2 ; 0001 0111 (0) W=0×17, FSR=02 ; 1100 0010 (0)	
Euromalo 9 - MDU		, 0000 0011	(0×03)		; 0000 0010 (0)	×02)
Example 2 ANDLV	Y KEG			Example 2 AND	WF FSR, O	
Before instruction:	REG=0×37	; 1010 0011 ; 0011 0111	(O×A3) (O×37)	-	W=0×17, FSR=0×C2 ; 0001 0111 (0> W=0×02, FSR=0×C2 ; 1100 0010 (0>	
After instruction:	W=UX23	; 0010 0011	(0×23)		; 0000 0010 (0>	×02)

Syntax: Description:	[<i>label</i>] IORLW k Operation logic OR is performed over the contents of W register and over 8-bit constant k , and result is stored in W register.	Syntax:[/abe/] IORWF f, dDescription:Operation logic OR is performed over the contents of W and f registers. If d=0, result is stored in W register. If d=1, result is stored in f register.
	(W) .OR. (k) ⇒ W 0 ≤ k ≤ 255 Z 1	Operation:(W) .OR. (f) \Rightarrow dOperand: $0 \le f \le 127$ d $\in [0,1]$ Flag:ZNumber of words:1Number of cycles:1
Example 1 IORLV		Example 1 IORWF REG, 0
Before instruction: After instruction:		Before instruction: REG=0×13, W=0×91 After instruction: REG=0×13, W=0×93 Z=0
Example 2 IORLW	/ REG	Example 2 IORWF REG, 1
Before instruction: After instruction:	W=0×9A contenst REG=0×37 W=0×9F Z=0	Before instruction: REG=0×13, W=0×91 After instruction: REG=0×93, W=0×91 Z=0

Syntax: Description:	[<i>label</i>] XORLW k Operation exclusive OR (XOR) is done over the contents of W register and constant k , and result is stored in W register.		Syntax: Description:	[<i>label</i>] XORWF f , d Operation exclusive OR is performed over the contents of W and f registers. If d=0 , result is stored in W register. If d=1 , result is stored in f register.	
Operation: Operand: Flag: Number of words: Number of cycles:					
Example 1 XORLV	V O×AF			Example 1 XORV	VF REG, 1
Before instruction: After instruction:		; 1010 1111 ; 1011 0101	· · ·		REG=0×AF, W=0×B5 ; 1010 1111 (0×AF) REG=0×1A, W=0×B5 ; 1011 0101 (0×B5)
		; 0001 1010	(0×1A)		; 0001 1010 (0×1A)
Example 2 XORLW REG			Example 2 XORV	VF REG,O	
Before instruction: After instruction:		; 1010 1111 ; 0011 0111			REG=0×AF, W=0×B5 ; 1010 1111 (0×AF) REG=0×AF, W=0×1A ; 1011 0101 (0×B5)
	Z=0	; 0001 1000	(0×18)		; 0001 1010 (O×1A)

Syntax: Description:	[<i>label</i>] INCF f , d Increments f register by one. If d=0 , result is stored in W reg If d=1 , result is stored in f reg	Syntax: Description:	[<i>label</i>] DECF f , d Decrements f register by one. If d=0 , result is stored in W reg If d=1 , result is stored in f reg
Operation: Operand: Flag: Number of words: Number of cycles:		Operation: Operand: Flag: Number of words: Number of cycles:	
Example 1 INCF	REG, 1	Example 1 DECF	REG, 1
Before instruction: After instruction:	REG=0×FF Z=0 REG=0×00 Z=1	Before instruction: After instruction:	Z=0
Example 2 INCF	REG, O	Example 2 DECF	REG, O
Before instruction: After instruction:	REG=0×10 W=× Z=0 REG=0×10 W=0×11 Z=0	`	REG=0×13 W=× Z=0 REG=0×13 W=0×12 Z=0

Syntax: Description:	[<i>label</i>] COMF f , d Contents of f register is complemented If d=0 , result is stored in W register. If d=1 , result is stored in f register.		[<i>label</i>] BCF f , b Reset bit b in f register. (0) ⇒ f 0 < f < 107
	$\overline{(\mathbf{f})} \Rightarrow \mathbf{d}$ $0 \le \mathbf{f} \le 127$ $\mathbf{d} \in [0,1]$ Z 1		1
	REG=0×13 ; 0001 0011 (0×13) REG=0×13 ; complement W=0×EC	Before instruction: After instruction: Example 2 BCF I	REG=0×C7; 1100 0111 (0×C7) REG=0×47; 0100 0111 (0×47) NDF, 3
Example 2 COMF Before instruction: After instruction:		Before instruction: After instruction:	W=0×17 FSR=0×C2 address contents (FSR)=0×2F W=0×17 FSR=0×C2 address contents (FSR)=0×27

Syntax:	[<i>label</i>] BSF f, b	Syntax:	[<i>label</i>] BTFSC f , b	
Description:	Set bit b in f register.	Description:	-	equals zero, then we skip the next instruction.
	1 ⇒ f 			during execution of the current instruction,
Operand:	0 ≤ f ≤ 127			xt one is disabled, and NOP instruction executes the current one a two-cycle instruction.
	0 ≤ b ≤ 7	Operation:	-	· · · · · · · · · · · · · · · · · · ·
Flag:	-	Operand:		
Number of words:			$0 \le \mathbf{b} \le 7$	
Number of cycles:	1	Flag:	-	
Example 1 BSF F	REG, 7	Number of v Number of c	vords: 1 :ycles: 1 or 2 depen	ding on a b bit
	REG=0×07;00000111 (0×07) REG=0×17;10000111 (0×17)	Example		
		LAB_01	BTFSC REG,1	;Test bit no.1 in REG
Example 2 BCF I	INDF, 3	LAB_02 LAB_03		;Skip this line if =0 ;Skip here if =1
Before instruction:	W=0×17 FSR=0×C2	Before instruc	ction, program count	er was at address LAB_01.
address contents (FSR)=0×20 After instruction, if the first bit in REG register was zero, After instruction: W=0×17 address concents address LAB_03.		REG register was zero, program counter points to		
	FSR=0×C2 address contents (FSR)=0×28	If the first bit in REG register was one, program counter points to address LAB_		

Syntax:	[<i>label</i>] BTFSS f , b			Syntax:	[<i>label</i>] INCFSZ f , d
Description	:If bit b in f register (equals one, then skip over the next instruction		Description	: Contents of f register is incremented by or
	If bit b equals one, o	during execution of the current instruction, the		· ·	If d=0, result is stored in W register.
	next one is disabled,	and NOP instruction is executed instead, thus			If d=1 , result is stored in f register.
		one a two-cycle instruction.			If result =0, the next instruction is execute
Operation:	Skip next instruction	if (f)=1			the current one a two-cycle instruction.
Operand:	0 ≤ f ≤ 127	· · ·		Operation:	$(f) + 1 \Rightarrow d$
· ·	0 ≤ b ≤ 7			Operand:	0 ≤ f ≤ 127
Flaq:	-			· ·	d ∈ [0,1]
Number of	words: 1			Flag:	-
Number of	cycles: 1 or 2 deper	iding on a b bit		Number of	words: 1
				Number of	cycles: 1 or 2 depending on a result
Example					
				Example	
LAB_01	BTFSS REG,1	;Test bit no.1 in REG			
LAB_02		;Skip this line if =1		LAB_01	INCESZ REG, 1 ; Increase the contents
LAB_03		;Skip here if =0		LAB_02	; Skip this line if =0
				LAB_03	; Skip here if =0
Before instru	iction, program count	er was at address LAB_01			
				The contents	s of program counter before instruction, PC=
After instruc	tion, if the first bit in I	REG register was one, program counter points	to		
address LAB		5		The contents	s of REG after executing an instruction REG=
	_			program cou	nter points to label address LAB_03. Otherw
If the first bi	it in REG register was	zero, program counter points to address LAB_	02.	points to ad	dress of the next instruction or to LAB_02.
	~				

d ister is incremented by one. stored in **W** register. stored in **f** register. next instruction is executed as NOP making two-cycle instruction. pending on a result ; Increase the contents REG by one. ; Skip this line if =0 ; Skip here if =0 ter before instruction, PC=address LAB_01 uting an instruction REG=REG+1, if REG=0, l address LAB_03. Otherwise, pc

Syntax: Description:	[<i>label</i>] DECFSZ f , d Contents of f register is decr by one. If d=0 , result is stored in W register. If d=1 , result is stored in f register. If result = 0, next instruction is executed as NOP, thus making the current one, a two-cycle instruction.	Syntax:[/abe/] GOTO kDescription:Unconditional jump to address k.Operation: $k \Rightarrow PC < 10:0>$, (PCLATH <4:3>) $\Rightarrow PC < 12:11>$ Operand: $0 \le k \le 2048$
Operation:	$(f) - 1 \Rightarrow d$	Flag: _
Operand:	0 ≤ f ≤ 127 d = [0,1]	Number of words: 1
Flaq:	d ∈ [0,1] -	Number of cycles: 2
Number of word	ls: 1 es: 1 or 2 depending on a result	Example
Example		LAB_00 GOTO LAB_01 ; Jump to LAB_01
LAB_02	Z CNT, 1 ; Decr the contents REG by one ; Skip this line if = 0 ; Skip here if = 1	e LAB_01
The contents of program counter before instruction, PC=address LAB_01 The contents of CNT register after executing an instruction		Before instruction: PC=address LAB_00 After instruction: PC=address LAB_01
CNT=CNT-1, if CNT=0,		
Otherwise, prog	points to address of label LAB_03. ram counter points to lowing instruction, or to LAB_02.	

Syntax: Description	[<i>label</i>] CALL k : Instruction calls a subprogram. First, return address (PC+1) is stored on stack, then 11-bit direct operand k , which contains the subprogram address, is stored in program counter.	Syntax: Description:	[<i>label</i>] RETURN Contents from the top of a stack
Operation:	(PC) + 1 ⇒ Top Of Stack (TOS) \mathbf{k} ⇒ PC<10:0>, (PCLATH<4:3>) ⇒ PC<12:11>		is stored in program counter.
Operand: Flag: Number of Number of (Example		Operation: Operand: Flag: Number of wor Number of cyc	
· ·	CALL LAB_02 ; Call subrutine LAB_02 ;	Example RE	ETURN
LAB_02	: 	Before instructio	on: PC=× TOS=×
Before instru After instruc	ction: PC=address LAB_01 TOS=× tion: PC=address LAB_02 TOS=LAB_01	After instruction	

Description: Operation: Operand: Flag: Number of w Number of c	- Iords: 1	Syntax:[label] RETFIEDescription:Return from a subbroaram. Value from TOS is stored in PC. Interrupts are enabled by setting a GIE bit.Operation:TOS ⇒ PC; 1 ⇒ GIEOperand:-Flag:-Number of words:1Number of cycles:2
Before instruc		Example RETFIE
After instructi	PC=X TOS=X on: W=0X43 PC=TOS TOS=TOS-1	Before instruction: PC=X GIE=0 After instruction: PC=TOS

Syntax: [/abe/] NOP	Syntax: [label] CLRWDT
Description: Does not execute any operation or affect any flag.	Description: Watchdoq timer is reset. Prescaler of the Watchdog timer is also reset,
Operation: - Operand: -	and status bits \overline{TO} and \overline{PD} are set also.
Flag: - Number of words: 1	Operation: $0 \Rightarrow WDT$ $0 \Rightarrow WDT$ prescaler
Number of cycles: 1	$1 \Rightarrow \overline{TO}$ $1 \Rightarrow \overline{PD}$
Example NOP	Operand: - Flag: TO, PD
Before instruction: PC=× After instruction: PC=×+1	Number of words: 1 Number of cycles: 1
	Example CLRWDT
	Before instruction: WDT counter=× WDT prescaler=1:128
	After instruction: WDT counter=0×00 WDT prescaler counter=0 TO=1 PD=1 WDT prescaler=1: 128

Syntax: Description: Operation:	[<i>label</i>] SLEEP Processor goes into low consumption mode. Oscis stopped. PD (Power Down) status bit is reset. TO bit is set. WDT (Watchdog) timer and its prescaler are reset. $0 \Rightarrow$ WDT
operation.	$0 \Rightarrow WDT \text{ prescaler}$ $1 \Rightarrow \overline{TO}$ $0 \Rightarrow \overline{PD}$
Operand:	-
Flag:	TO, PD
Number of words:	
Number of cycles:	1
Example SLEEP	
Before instruction:	WDT counter=× WDT prescaler=×
After instruction:	WDT counter=0×00 WDT prescaler=0 TO=1 PD=0