
563 L03.1 Fall 2007

ECE 563
Advanced Computer Architecture

Fall 2007

Lecture 3: Memory Hierarchy Review: Caches

563 L03.2 Fall 2007

10

DRAM

CPU

100

1000

Year

Gap grew 50% per
year

Performance
(1/latency) CPU

60% per yr
2X in 1.5 yrs

DRAM
9% per yr
2X in 10 yrs

19
80

20
00

19
90

Since 1980, CPU has outpaced DRAM ...

Four-issue 2GHz superscalar accessing 100ns DRAM could
execute 800 instructions during time for one memory access!

563 L03.3 Fall 2007

Addressing the Processor-Memory Performance GAP

Goal: Illusion of large, fast, cheap memory. Let
programs address a memory space that scales to
the disk size, at a speed that is usually as fast as
register access

Solution: Put smaller, faster “cache” memories
between CPU and DRAM. Create a “memory
hierarchy”.

563 L03.4 Fall 2007

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns-

500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms
(10,000,000 ns)

10 -

10 cents/bit-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Today’s

Focus

563 L03.5 Fall 2007

Common Predictable Patterns

Two predictable properties of memory references:

Temporal Locality: If a location is referenced, it is
likely to be referenced again in the near future (e.g.,
loops, reuse).

Spatial Locality: If a location is referenced it is likely
that locations near it will be referenced in the near
future (e.g., straightline code, array access).

563 L03.6 Fall 2007

Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program
Restructuring for Virtual Memory. IBM Systems Journal
10(3): 168-192 (1971)

Time

M
em

or
y

A
dd

re
ss

 (o
ne

 d
ot

 p
er

 a
cc

es
s)

Spatial
Locality

Temporal
Locality

Bad locality behavior

563 L03.7 Fall 2007

Caches

Caches exploit both types of predictability:

Exploit temporal locality by
remembering the contents of recently
accessed locations.

Exploit spatial locality by fetching
blocks of data around recently accessed
locations.

563 L03.8 Fall 2007

Cache Algorithm (Read)

HIT - Found in Cache

Return copy
of data from
cache

MISS - Not in cache

Read block of data
from Main Memory

Wait …

Return data to
processor
and update cache

Look at Processor Address, search cache
tags to find match. Then either

Hit Rate = fraction of accesses found in cache

Miss Rate = 1 – Hit rate

Hit Time = RAM access time +

time to determine HIT/MISS

Miss Time = time to replace block in cache +

time to deliver block to processor

563 L03.9 Fall 2007

Inside a Cache

CACHEProcessor Main
Memory

Address Address

DataData

Address
Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

Line100

304

6848

copy of main
memory
location 100

copy of main
memory
location 101

416

563 L03.10 Fall 2007

4 Questions for Memory Hierarchy

Q1: Where can a block be placed in the cache?

(Block placement)

Q2: How is a block found if it is in the cache?
(Block identification)

Q3: Which block should be replaced on a miss?
(Block replacement)

Q4: What happens on a write?
(Write strategy)

563 L03.11 Fall 2007

0 1 2 3 4 5 6 70 1 2 3Set Number

Cache

Fully (2-way) Set Direct
Associative Associative Mapped
anywhere anywhere in only into

set 0 block 4
(12 mod 4) (12 mod 8)

0 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

Block 12
can be placed

Q1: Where can a block be placed?

0

563 L03.12 Fall 2007

Q2: How is a block found?
Index selects which set to look in

Tag on each block
No need to check index or block offset

Increasing associativity shrinks index, expands
tag. Fully Associative caches have no index field.

Block
Offset

Block Address

IndexTag

Memory Address

563 L03.13 Fall 2007

Direct-Mapped Cache

Tag Data BlockV

=

Block
Offset

Tag Index

t k b

t

HIT Data Word or Byte

2k

lines

563 L03.14 Fall 2007

2-Way Set-Associative Cache

Tag Data BlockV

=

Block
Offset

Tag Index

t k

b

HIT

Tag Data BlockV

Data
Word
or Byte

=

t

563 L03.15 Fall 2007

Fully Associative Cache

Tag Data BlockV

=

B
lo

ck
O

ff
se

t
T
ag

t

b

HIT

Data
Word
or Byte

=

=

t

563 L03.16 Fall 2007

What causes a MISS?
Three Major Categories of Cache Misses:

Compulsory Misses: first access to a
block
Capacity Misses: cache cannot contain all
blocks needed to execute the program
Conflict Misses: block replaced by
another block and then later retrieved -
(affects set assoc. or direct mapped
caches)

- Nightmare Scenario: ping pong effect!

563 L03.17 Fall 2007

Word3Word0 Word1 Word2

Block Size and Spatial Locality

Larger block size has distinct hardware advantages
• less tag overhead
• exploit fast burst transfers from DRAM
• exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?

block address offsetb

2b = block size a.k.a line size (in bytes)

Split CPU
address

b bits32-b bits

Tag

Block is unit of transfer between the cache and memory

4 word block,
b=2

Fewer blocks => more conflicts. Can waste bandwidth.

563 L03.18 Fall 2007

Q3: Which block should be replaced on a miss?

Easy for Direct Mapped

Set Associative or Fully Associative:
Random
Least Recently Used (LRU)

- LRU cache state must be updated on every access
- true implementation only feasible for small sets (2-way)
- pseudo-LRU binary tree often used for 4-8 way

First In, First Out (FIFO) a.k.a. Round-Robin
- used in highly associative caches

Replacement policy has a second order effect
since replacement only happens on misses

563 L03.19 Fall 2007

Cache hit:
write through: write both cache & memory

- generally higher traffic but simplifies cache coherence

write back: write cache only
(memory is written only when the entry is evicted)

- a dirty bit per block can further reduce the traffic

Cache miss:
no write allocate: only write to main memory
write allocate (aka fetch on write): fetch into cache

Common combinations:
write through and no write allocate
write back with write allocate

Q4: What happens on a write?

563 L03.20 Fall 2007

5 Basic Cache Optimizations
Reducing Miss Rate
1. Larger Block size (compulsory misses)
2. Larger Cache size (capacity misses)
3. Higher Associativity (conflict misses)

Reducing Miss Penalty
1. Multilevel Caches

Reducing hit time
5. Giving Reads Priority over Writes

• E.g., Read complete before earlier writes in write buffer

	ECE 563�Advanced Computer Architecture ��Fall 2007��Lecture 3: Memory Hierarchy Review: Caches
	Since 1980, CPU has outpaced DRAM ...
	Addressing the Processor-Memory Performance GAP�
	Levels of the Memory Hierarchy
	Common Predictable Patterns
	Memory Reference Patterns
	Slide Number 7
	Cache Algorithm (Read)
	Slide Number 9
	4 Questions for Memory Hierarchy
	Q1: Where can a block be placed? �
	Q2: How is a block found?
	Direct-Mapped Cache
	2-Way Set-Associative Cache
	Fully Associative Cache
	What causes a MISS?
	Block Size and Spatial Locality
	Q3: Which block should be replaced on a miss?
	Q4: What happens on a write?
	5 Basic Cache Optimizations

