
C CSCMCS 611-101
Advanced Computer ArchitectureAdvanced Computer Architecture

Lecture 7Lecture 7

Pipeline HazardsPipeline Hazards

September 28, 2009September 28, 2009

www.csee.umbc.edu/~younis/CMSC611/CMSC611.htm

Mohamed Younis CMCS 611, Advanced Computer Architecture 1

Lecture’s Overview
Previous Lecture:Previous Lecture:

Pipelined hazards
• Pipelining concept is natural• Pipelining concept is natural

• Start handling of next instruction while current one is in progress

Pipeline performancePipeline performance
• Performance improvement by increasing instruction throughput

• Ideal and upper bound for speedup is number of stages in pipelinepp p p g p p

This Lecture:

S l d d l h d• Structural, data and control hazards

• Data Hazard resolution techniques

Mohamed Younis CMCS 611, Advanced Computer Architecture 2

• Pipelined control

Stages of Instruction Execution
C l 1 C l 2 C l 3 C l 4 C l 5Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WBLoad

The load instruction is the longest
All instructions follows at most the following five steps:All instructions follows at most the following five steps:

Ifetch: Instruction Fetch
• Fetch the instruction from the Instruction Memory

Reg/Dec: Registers Fetch and Instruction Decode
Exec: Calculate the memory address
Mem: Read the data from the Data Memory

Mohamed Younis CMCS 611, Advanced Computer Architecture 3

y
WB: Write the data back to the register file

* Slide is courtesy of Dave Patterson

Instruction Pipelining
Start handling of next instruction while the current instruction is in progress

Time

Pipelining is feasible when different devices are used at different stages of
instruction execution

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WBProgram Flow

stages pipe ofNumber
nsinstructio between Time

nsinstructio between Time ednonpipelin
pipelined =

Mohamed Younis CMCS 611, Advanced Computer Architecture 4

Pipelining improves performance by increasing instruction throughputPipelining improves performance by increasing instruction throughput

Pipeline Datapath
Data Stationary

Every stage must be completed in one clock cycle to avoid stalls
Values must be latched to ensure correct execution of instructions

Mohamed Younis CMCS 611, Advanced Computer Architecture 5

The PC multiplexer has moved to the IF stage to prevent two instructions
from updating the PC simultaneously (in case of branch instruction)

Pipeline Hazards
Pipeline hazards are cases that affect instruction execution

semantics and thus need to be detected and corrected
Hazards types

Structural hazard: attempt to use a resource two different ways at same timeStructural hazard: attempt to use a resource two different ways at same time
E.g., combined washer/dryer would be a structural hazard or folder busy

doing something else (watching TV)
Si l f i t ti d d tSingle memory for instruction and data

Data hazard: attempt to use item before it is ready
E.g., one sock of pair in dryer and one in washer; can’t fold until get sock

from washer through dryer
instruction depends on result of prior instruction still in the pipeline

Control hazard: attempt to make a decision before condition is evaluated
E.g., washing football uniforms and need to get proper detergent level;

need to see after dryer before next load in
branch instructions

Mohamed Younis CMCS 611, Advanced Computer Architecture 6

branch instructions

Hazards can always be resolved by waiting

Single Memory is a Structural Hazard
Time (clock cycles)

I

Time (clock cycles)

A

M R M RI
n
s
t

Load

Instr 1

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

r.

O
r

Instr 1

Instr 2

U

A
LUMem Reg Mem Reg

Mem
r
d
e
r

Instr 3

I t 4

A
LUReg Mem Reg

A
LMem Reg Mem RegInstr 4

LUMem Reg Mem Reg

Mohamed Younis CMCS 611, Advanced Computer Architecture 7

Can be easily detected Resolved by inserting idle cycles
* Slide is courtesy of Dave Patterson

Stalls & Pipeline Performance
dunpipeline timeninstructio AveragepipeliningfromSpeedup =

dunpipeline cycleClock dunpipeline CPI
pipelined timeninstructio Average

pipelining from Speedup

×=

=

pipelinedcycleClock pipelinedCPI

Ideally the CPI of the pipeline execution is 1 (after fill-up), thus

CPI pipelined = Ideal CPI + Pipeline stall clock per instruction

= 1 + Pipeline stall clock per instruction

pipelined cycleClock
dunpipeline cycleClock

ninstructioper cycles stall Pipeline 1
dunpipeline CPI Speedup ×

+
=

1

Assuming all pipeline stages are balanced, then

Mohamed Younis CMCS 611, Advanced Computer Architecture 8

depthPipeline
ninstructioper cycles stall Pipeline 1

1 Speedup ×
+

=

Stall: wait until decision is clear

Control Hazard
Stall: wait until decision is clear

It is possible to move up decision to 2nd stage by adding hardware to
check registers as being read

I
n
s
t

Time (clock cycles)

Add

A
LUMem Reg Mem Reg

t
r.

O

Add

Beq

U

A
LUMem Reg Mem Reg

r
d
e
r

q

Load

A
LUReg Mem RegMemStall

r

Mohamed Younis CMCS 611, Advanced Computer Architecture 9

Impact: 2 clock cycles per branch instruction ⇒ slow
* Slide is courtesy of Dave Patterson

Predict: guess one direction then back up if wrong
Control Hazard Solution

Predict not taken
I
n

Time (clock cycles)

s
t
r.

Add

A
LUMem Reg Mem Reg

A

O
r
d

Beq

Load
A

LUMem Reg Mem Reg

A

e
r

Load Mem

A
LUReg Mem Reg

Impact: 1 clock cycles per branch instruction if right, 2 if wrong
(right 50% of time)

Mohamed Younis CMCS 611, Advanced Computer Architecture 10

(right 50% of time)
More dynamic scheme: history of 1 branch (90%)

* Slide is courtesy of Dave Patterson

Redefine branch behavior (takes place after next instruction)

Control Hazard Solution
(p)

“delayed branch”
I
n

Time (clock cycles)
n
s
t
r.

Add

A
LUMem Reg Mem Reg

O
r
d

Beq

A
LUMem Reg Mem Reg

A

e
r

Misc Mem

A
LUReg Mem Reg

L d Mem

A
LR Mem RegLoad Mem LUReg Mem Reg

Impact: 0 clock cycles per branch instruction if can find

Mohamed Younis CMCS 611, Advanced Computer Architecture 11

Impact: 0 clock cycles per branch instruction if can find
instruction to put in “slot” (50% of time)

* Slide is courtesy of Dave Patterson

Data Hazard
Time (clock cycles)

I
n

add r1,r2,r3
IF ID/RF EX MEM WBA

LUIm Reg Dm Reg

n
s
t
r.

sub r4,r1,r3

A
LUIm Reg Dm Reg

A
O
r
d

and r6,r1,r7

or r8 r1 r9

A
LUIm Reg Dm Reg

Im

A
LUReg Dm Regd

e
r

or r8,r1,r9

xor r10,r1,r11

U

A
LUIm Reg Dm Reg

Mohamed Younis CMCS 611, Advanced Computer Architecture 12

Dependencies backwards in time are hazardsDependencies backwards in time are hazards
* Slide is courtesy of Dave Patterson

Data Hazard Solution
Time (clock cycles)

I

Time (clock cycles)

add r1,r2,r3
IF ID/RF EX MEM WBA

LUIm Reg Dm Reg
I
n
s
t sub r4,r1,r3

A
LUIm Reg Dm Reg

r.

O
r

and r6,r1,r7
A

LUIm Reg Dm Reg

A

d
e
r

or r8,r1,r9

10 1 11

Im

A
LUReg Dm Reg

A
LIm Reg D Regxor r10,r1,r11

LUIm Reg Dm Reg

Mohamed Younis CMCS 611, Advanced Computer Architecture 13

“Forward” result from one stage to another
* Slide is courtesy of Dave Patterson

Implementing Data Forwarding

The ALU result from EX/MEM register is fed back and kept in next stages

Mohamed Younis CMCS 611, Advanced Computer Architecture 14

The ALU result from EX/MEM register is fed back and kept in next stages
If data hazard is detected the forward values will be used

Example

Add R1 R2 R3Add R1, R2, R3

LW R4, 0(R1)

SW 12(R1), R4

Mohamed Younis CMCS 611, Advanced Computer Architecture 15

The ALU result from EX/MEM register is forwarded to MEM/WB

Forwarding Datapath

Three additional inputs are added to the ALU multiplexers each

Mohamed Younis CMCS 611, Advanced Computer Architecture 16

Three additional inputs are added to the ALU multiplexers each
corresponding to a bypass (forwarded data)

Data Hazards Classification
Data hazard can happen because dependence among a pair of instructions

writing and reading to the same register or memory locationwriting and reading to the same register or memory location
By stalling the pipeline on cache misses data hazards caused by memory

access are avoided
Data hazards types (instruction I proceeds J)

RAW (read after write): J attempts to read an operand before I writes it
Most common type of hazard and typically handled by forwarding

WAW (write after write): J attempts to write an operand before I writes it
Can happen when writing is done in more than one pipeline stage
For MIPS pipeline WAW hazard can happen if WB is performed duringFor MIPS pipeline, WAW hazard can happen if WB is performed during

MEM stage and the memory is slow so that MEM stage take two cycles

LW R 1, 0 (R 2) IF ID EX M EM 1 M EM 2 W B

WAR (write after read): J attempts to write an operand before I reads it

AD D R 1, R 2, R 3 IF ID EX W B

Mohamed Younis CMCS 611, Advanced Computer Architecture 17

Happen when there are instructions that write early in the pipeline while
others reading in a late stage

Data Hazards for Load Instructions

Dependencies backwards in time but cannot be solved with forwarding

Mohamed Younis CMCS 611, Advanced Computer Architecture 18

Dependencies backwards in time but cannot be solved with forwarding
Must delay/stall instruction dependent on loads

Solving Hazard by Pipeline Interlock

Mohamed Younis CMCS 611, Advanced Computer Architecture 19

Compiler Scheduling for Data Hazards
The compiler usually performs instruction scheduling to avoid causing data

hazard such as:

al
l

hazard, such as:
avoid generating LW followed by an immediate instruction
that uses the destination register
Change order of instructions in the basic block

Example: compile the following:

b d f

Example: compile the following:

b d fau
se

 a
 s

ta Change order of instructions in the basic block

a = b + c; d = e – f;

LW Rb, b

a = b + c; d = e – f;

LW Rb, b

ad
s

th
at

 c
a

LW Rc, c
ADD Ra, Rb, Rc (stall)
LW Re, e

LW Rc, c
LW Re, e
ADD Ra, Rb, Rc

Swapped

io
n

of
 lo

a

,
SW a, Ra
LW Rf, f
SUB Rd Re Rf (stall)

, ,
LW Rf, f
SW a, Ra
SUB Rd Re Rf

SwappedFr
ac

t

Mohamed Younis CMCS 611, Advanced Computer Architecture 20

SUB Rd, Re, Rf (stall)
SW d, Rd

SUB Rd, Re, Rf
SW d, Rd

Benchmark

Data Hazards Detection
Detecting hazards early in the pipeline reduces hardware complexity since

the machine state will not get erroneously changedthe machine state will not get erroneously changed
For the MIPS integer pipeline, all data hazards can be checked in ID stage

Situation Example code ActionE l Situation p
sequence

Action

No
dependence

LW R1, 45 (R2)
ADD R5,R6,R7
SUB R8 R6 R7

No hazard possible because no dependence
exists on R1 in the immediately following
three instructions

Example:

Load
interlock

SUB R8,R6,R7
OR R9, R6, R7

Dependence
requiring stall

LW R1, 45 (R2)
ADD R5,R1,R7
SUB R8 R6 R7

Comparators detect the use of R1 in the ADD
and stall the ADD (and SUB and OR) before
the ADD begins EX

detection

SUB R8,R6,R7
OR R9, R6, R7

the ADD begins EX

Dependence
overcome by
f di

LW R1, 45 (R2)
ADD R5,R6,R7

Comparators detect the use of R1 in the SUB
and forward result of load to ALU in time for
SUB b i EXforwarding SUB R8,R1 ,R7

OR R9, R6, R7
SUB to begin EX

Dependence
with accesses

LW R1, 45 (R2)
ADD R5,R6,R7

No action required because the read of R1 by
OR occurs in the second half of the ID phase,

Mohamed Younis CMCS 611, Advanced Computer Architecture 21

in order
ADD R5,R6,R7
SUB R8,R6,R7
OR R9, R1, R7

p ,
while the write of the loaded data occurred in
the first half.

Load Interlock Detection
Pipeline stall is needed when a load instruction is followed by the an

instruction that read the yet-to-be-loaded register

The load interlock conditions for RAW hazards are:

Opcode field of ID/EX Opcode field of IF/IDOpcode field of ID/EX
(ID/EX.IR 0..5)

Opcode field of IF/ID
(IF/ID. IR 0..5)

Matching operand fields

Load Register-register ALU ID/EX. IR 11..15 == IF/ID.IR 6..10
Load Register-register ALU ID/EX IR 11 15 == IF/ID IR 11 15Load Register-register ALU ID/EX. IR 11..15 == IF/ID. IR 11..15

Load Load, store, ALU imm., or branch ID/EX. IR 11..15 == IF/ID.IR 6..10

Control logic is simple combinational circuit with input from ID/EX and IF/IDControl logic is simple combinational circuit with input from ID/EX and IF/ID

Once the hazard is detected the control unit must insert the pipeline stall and
prevent the instructions in the IF and ID stages from advancing

Since all control logic is derived from the data stationary, stalling the pipeline
is simply by setting the ID/EX portion to zero (matching the NOP instruction)

In case of a stall, the contents of the IF/ID registers will be re-circulated to

Mohamed Younis CMCS 611, Advanced Computer Architecture 22

, g
hold the stalled instruction

Pipeline
register

Opcode of

Pipeline
register Opcode of Destination Comparison (if

Data Forwarding Logic
register

containing
source

instruction

Opcode of
source

instruction

register
containing
destination
instruction

Opcode of
destination
instruction

Destination
of the

forwarded
result

Comparison (if
equal then
forward)

EX/MEM Register-
register ALU

ID/EX Register-register ALU,
ALU immediate load

Top ALU
input

EX/MEM.IR 16..20 ==
ID/EX IR 6 10register ALU ALU immediate, load,

store, branch
input ID/EX.IR 6..10

EX/MEM Register-
register ALU

ID/EX Register-register ALU Bottom ALU
input

EX/MEM.IR 16..20 ==
ID/EX.IR 11..15

MEM/WB Register-
register ALU

ID/EX Register-register ALU,
ALU immediate, load,

Top ALU
input

EX/MEM.IR 16..20 ==
ID/EX.IR 6 10g , ,

store, branch
p 6..10

MEM/WB Register-
register ALU

ID/EX Register-register ALU Bottom ALU
input

EX/MEM.IR 16..20 ==
ID/EX.IR 11..15

EX/MEM ALU
immediate

ID/EX Register-register ALU,
ALU immediate load,

Top ALU
input

EX/MEM.IR 16..20 ==
ID/EX.IR 6..10,

store, branch
p

EX/MEM ALU
immediate

ID/EX Register-register ALU Bottom ALU
input

EX/MEM.IR 16..20 ==
ID/EX.IR 11..15

MEM/WB ALU
immediate

ID/EX Register-register ALU,
ALU immediate load,

Top ALU
input

EX/MEM.IR 16..20 ==
ID/EX.IR 6..10

store, branch
MEM/WB ALU

immediate
ID/EX Register-register ALU Bottom ALU

input
EX/MEM.IR 16..20 ==
ID/EX.IR 11..15

MEM/WB Load ID/EX Register-register ALU,
ALU immediate load,

Top ALU
input

EX/MEM.IR 16..20 ==
ID/EX.IR 6..10

Mohamed Younis CMCS 611, Advanced Computer Architecture 23

store, branch
MEM/WB load ID/EX Register-register ALU Bottom ALU

input
EX/MEM.IR 16..20 ==
ID/EX.IR 11..15

Conclusion
Summary

Pipeline Hazards
• Structural, data and control hazards

Data Hazards
• Forwarding techniques for simple data hazards resolution
• Data hazards classifications and detection logic• Data hazards classifications and detection logic
• Load-caused pipeline stalls and how to limit their scope
• Compiler-based instruction scheduling to avoid pipeline stalls
• Implementation of data hazard detection and forwarding logic

Next Lecture
Pipeline control hazards
Pipelining and exception handling

Mohamed Younis CMCS 611, Advanced Computer Architecture 24

Reading assignment includes Appendix A.2 & A.3 in the textbook

