
C CSCMCS 611-101
Advanced Computer ArchitectureAdvanced Computer Architecture

Lecture 9Lecture 9

Pipeline Implementation ChallengesPipeline Implementation Challenges

October 5, 2009October 5, 2009

www.csee.umbc.edu/~younis/CMSC611/CMSC611.htm

Mohamed Younis CMCS 611, Advanced Computer Architecture 1

Lecture’s Overview
Previous Lecture:Previous Lecture:

Control hazards
•Limiting the effect of control hazards via branch prediction and delay
•Static branch prediction techniques and performance
•Branch delay issues and performance

Exceptions handlingExceptions handling
•Categorizing of exception based on types and handling requirements
•Issues of stopping and restarting instructions in a pipeline
•Precise exception handling and the conditions that enable itPrecise exception handling and the conditions that enable it
•Instructions set effects on complicating pipeline design

This Lecture
Pipelining floating point operations
An example pipeline: MIPS R4000

Mohamed Younis CMCS 611, Advanced Computer Architecture 2

Floating-Point Pipeline
It is impractical to require that all MIPS floating point operations complete in
one clock cycle (complex logic and/or very long clock cycle)

A floating-point pipeline differs from
integer instructions pipeline in: EX stage not pipelined integer instructions pipeline in:

The EX cycle may be repeated as many
times as need to complete the operation

There may be multiple floating point

stall if EX takes more
than one cycle

There may be multiple floating-point
functional units

Integer & FP

A stall will occur if the instruction

g
instructions

to be issued will either cause a
structural or a data hazard
No instruction is assumed to enter

Multi-cycle
EX phase

Mohamed Younis CMCS 611, Advanced Computer Architecture 3

the EX stage as long the previous
instruction has not finished it

Multi-cycle FP Pipeline
Integer ALU7 t i li d Integer ALU7-stages pipelined

FP multiple

Non-pipelined DIV
operation stalling
th h l i lithe whole pipeline
for 24 cycle

Pipelined FP addition
with latency of 3 cycles

MULTD IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB
ADDD IF ID A1 A2 A3 A4 MEM WB
LD IF ID EX MEM WB
SD IF ID EX MEM WB

Mohamed Younis CMCS 611, Advanced Computer Architecture 4

SD IF ID EX MEM WB

Example: blue indicate where data is needed and red when result is available

Multi-cycle FP Pipeline EX Phase
Example: assume that floating point add, subtract and multiply can be

f d i t hil i t d FP di id tperformed in stages while integer and FP divide cannot
Latency: the number of intervening cycles between an instruction that
produces a result and an instruction that uses it
Since most operations consume their operands at the beginning of the EX
stage, latency is usually the number of stages in the EX an instruction uses
Naturally long latency increases the frequency of RAW hazards

F ti l it L t I iti ti i t l

Initiation (Repeat) interval: the number of cycles that must elapse between
issuing two operations of a given type

Functional unit Latency Initiation interval
Integer ALU 0 1
Data memory (integer and FP loads) 1 1y (g)
FP add 3 1
FP multiply (also integer multiply) 6 1
FP di id (l i t di id) 24 25

Mohamed Younis CMCS 611, Advanced Computer Architecture 5

FP divide (also integer divide) 24 25
 Example of typical latency of floating point operations

FP Pipeline Challenges
Issues:

Because the divide unit is not fully pipelined, structural hazards can occur
Because the instructions have varying running times, the number of register
writes required in a cycle can be larger than 1
WAW hazards are possible, since instructions no longer reach WB in order
WAR hazards are NOT possible, since register reads are still taking place
during the ID stageduring the ID stage
Instructions can complete in a different order than they were issued, causing
problems with exceptions
Longer latency of operations makes stalls for RAW hazards more frequentLonger latency of operations makes stalls for RAW hazards more frequent

Clock cycle number
Instruction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
LD F4, 0(R2) IF ID EX MEM WB
MULTD F0, F4, F6 IF ID stall M1 M2 M3 M4 M5 M6 M7 MEM WB
ADDD F2, F0, F8 IF stall ID stall stall stall stall stall stall A1 A2 A3 A4 MEM
SD 0(R2), F2 IF stall stall stall stall stall stall ID EX stall stall stall MEM

Mohamed Younis CMCS 611, Advanced Computer Architecture 6

(),

Example of RAW hazard caused by the long latency

Write-Caused Structural Hazard

Clock cycle numberInstruction yInstruction
1 2 3 4 5 6 7 8 9 10 11

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB
… IF ID EX MEM WB
… IF ID EX MEM WB
ADDD F2, F4, F6 IF ID A1 A2 A3 A4 MEM WB
… IF ID EX MEM WB
… IF ID EX MEM WB
LD F2, 0(R2) IF ID EX MEM WB

At l 11 th MULTD ADDD d LD i t ti ill t t it b kAt cycle 11, the MULTD, ADDD and LD instructions will try to write back
causing structural hazard if there is only one write port
Additional write ports are not cost effective since they are rarely used and it
i b d d l h l h dis better to detect and resolve the structural hazard
Structural hazards can be detected at the ID stage and the instruction will be
stalled to avoid a conflict with another at the WB

Mohamed Younis CMCS 611, Advanced Computer Architecture 7

Alternatively, structural hazards can be handled at the MEM or WB by
rescheduling the usage of the write port

Clock cycle number Instruction
1 2 3 4 5 6 7 8 9 10 11

WAW Data Hazards
1 2 3 4 5 6 7 8 9 10 11

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB
… IF ID EX MEM WB

IF ID EX MEM WB… IF ID EX MEM WB
ADDD F2, F4, F6 IF ID A1 A2 A3 A4 MEM WB
… IF ID EX MEM WB
LD F2 0(R2) IF ID EX MEM WBLD F2, 0(R2) IF ID EX MEM WB
…. IF ID EX MEM WB

WAW hazards can be corrected by either:
Stopping the latter instruction (LD in example) at the MEM until it is safe
Preventing the first instruction from overwriting the register

Correcting WAW Hazards at cycle 11 is not problematic unless there is an
instruction between ADDD and LD that read F2 causing RAW hazard
WAW hazards can be detected at the ID stage and thus the first instruction
can be converted to no-op

Mohamed Younis CMCS 611, Advanced Computer Architecture 8

Since WAW hazards are generally very rare, designers usually go with the
simplest solution

Detecting Hazards
Hazards can occur among FP instructions and among FP and integer
instructions
Using separate register files for integer and FP limits potential hazards to just
FP load and store instructions
Assuming all checks are to be performed in the ID phase, hazards can be
detected through the following steps:

Check for structural hazards:Check for structural hazards:
Wait if the functional unit is busy (Divides in our case)
Make sure the register write port is available when needed

Check for a RAW data hazardCheck for a RAW data hazard
Requires knowledge of latency and initiation interval to decide when
to forward and when to stall

Check for a WAW data hazardCheck for a WAW data hazard
Write completion has to be estimated at the ID stage to check with
other instructions in the pipeline

Data hazard detection and forwarding logic can be derived from values

Mohamed Younis CMCS 611, Advanced Computer Architecture 9

Data hazard detection and forwarding logic can be derived from values
stored at the data stationary between the different stages

Maintaining Precise Exception
Pipelining FP instructions can cause out-of-order completion since FP

ti diff t i l thoperations are different in length
Although data hazard solutions prevent the effect of out-of-order instruction
completion on the semantics, exception handling can be problematic
Example: DIVD F0, F2, F4 ADDD and SUBD will complete

ADDD F10, F10, F8 before DIVD completes without
SUBD F12, F12, F14 causing any data hazards

What if an exception occurs while DIVD executes in a point of time
after ADDD overwrites F10 !!

There are four possible approaches to deal with FP exception handling: p pp p g
Settle for imprecise exceptions (restrict # active FP instructions)

IEEE floating point standard requires precise exceptions
Some supercomputers still uses this approachp p pp
Some machines offer slow precise and fast imprecise exceptions

Buffer the results of all operations until previous instructions complete
Complex and expensive design (many comparators and large MUX)

Mohamed Younis CMCS 611, Advanced Computer Architecture 10

p p g (y p g)
History or future register file are practical implementations that allow
for restoring original machine state in case of exception

Precise Exception Approaches (Cont.)
Four possible approaches to deal with FP exception handling (cont.):

Allow imprecise exceptions and get the handler to clean up any miss
Simply save PC and some state about the interrupting instruction
and all out-of-order completed instructionsp
The trap handler will consider the state modification caused by
finished instructions and prepare machine to resume correctly
Issues: consider the following exampleIssues: consider the following example
Instruction1: A long-running instr. that eventually get interrupted
Instructions 2 … (n-1) : A series of instructions that are not complete
Instruction n : An instruction that is finishedn

The trap handler will have a complex job to deal with
The compiler can simplify the problem by grouping FP instructions
so that the trap does not have to worry about unrelated instructions so t at t e t ap does ot a e to o y about u e ated st uct o s

Allow instruction issue to continue only if previous instruction are
guaranteed to cause no exceptions:

Mainly applied in the execution phase

Mohamed Younis CMCS 611, Advanced Computer Architecture 11

Mainly applied in the execution phase
Used on MIPS R4000 and Intel Pentium

Performance of FP Pipeline
A b f

Add/S bt t

Average number of
stalls per instruction
mainly affected by
latency and number of Add/Subtract

Compares

Multiply
ch

m
ar

k

latency and number of
cycles before results
are used but not by
instruction frequency

Divide

Divide Structural

P
SP

EC
 B

en
cinstruction frequency

(except for divide)

Stalls are mainly
caused by: Fcaused by:

Latency of the divide
instruction

RAW hazards

WAW hazards are
possible but rare in

Mohamed Younis CMCS 611, Advanced Computer Architecture 12

practice

Performance of FP Pipeline (Cont.)

FP results stall

FP Compare stall

ch
m

ar
k

FP Compare stall

Branch/Load stalls

FP Structural

P
SP

EC
 B

en
c

FP

The total number of stalls/instr. range from 0.65 to 1.21 with average 0.87
FP result stalls dominate in all cases with average of 0 71 (82% of all stalls)

Mohamed Younis CMCS 611, Advanced Computer Architecture 13

FP result stalls dominate in all cases with average of 0.71 (82% of all stalls)
Compares generate an average of 0.1 stalls and are second largest source

MIPS 4000 Pipeline
Implements the MIPS-3 64-bit instruction
Uses 8 stages pipeline through pipelining instruction and data cache access
Deeper pipeline allows for higher clock rate but increases load/branch delays

IF Fi t h lf f i t f t h PC l ti i iti ti f i t ti hIF: First half of instr. fetch; PC selection, initiation of instruction cache access
IS: Second half of the instruction fetch completing instruction cache access
RF: Instr. Decode, register fetch, hazard checking and instr. cache hit detection
EX: ALU operations, effective address calculation, and condition evaluation
DF: Data fetch, first half of data cache access
DS: Second half of data fetch, completion of data cache access

Mohamed Younis CMCS 611, Advanced Computer Architecture 14

TC: Tag check, determine whether the data cache access hit
WB: Write back for loads and register-register operations

Load Delays

Data value are available at the end of the DS cycle cause a two cycle delayData value are available at the end of the DS cycle, cause a two cycle delay
for load instructions
Pipelined cache access increases the need for forwarding and complicates
the forwarding logic

Mohamed Younis CMCS 611, Advanced Computer Architecture 15

the forwarding logic
A cache miss will stall the pipeline additional one (or more) cycles

Branching Delays

Branch conditions are computed during EX stage extending the basic branch
delay to 3 cycles

Mohamed Younis CMCS 611, Advanced Computer Architecture 16

MIPS allows for a single-cycle delay branching and a predict-not-taken
strategy for the remaining two branching delay cycles

MIPS 4000 FP Pipeline
Three FP functional units: adder, multiplier and divider, with the adder logic
serving as the final step of the a multiply and divideserving as the final step of the a multiply and divide

Stage Functional Unit Description
A FP adder Mantissa ADD stage
D FP Divider Divide pipeline stageD FP Divider Divide pipeline stage
E FP Multiplier Exception test stage
M FP Multiplier First stage of multiplier
N FP Multiplier Second stage of multiplierN FP Multiplier Second stage of multiplier
R FP adder Rounding stage
S FP adder Operand shift stage
U Unpack FP numbers

The FP functional unit can be thought as having eight different stages, combined
in different order to execute various FP operations
An instruction can use a stage zero or multiple times and in different orders

FP Instruction Latency Pipeline stages
Add/Subtract 4 U, S+A, A+R, R+S
Multiply 8 U E+M M M M N N+A R

g p

Mohamed Younis CMCS 611, Advanced Computer Architecture 17

Multiply 8 U, E+M, M, M, M, N, N+A, R
Divide 36 U, A, R, D27, D+A, D+R, D+A, D+R, A, R
Compare 3 U, A, R

Base

Performance of MIPS Pipeline
Load stalls
Branch stalls
FP result stalls

in
e

C
PI

FP structural stalls

Pi
pe

li

Mohamed Younis CMCS 611, Advanced Computer Architecture 18

SPEC92 benchmark

Conclusion
Summary

E ti h dliExceptions handling
• Categorizing of exception based on types and handling requirements
• Issues of stopping and restarting instructions in a pipeline
• Precise exception handling and the conditions that enable it
• Instructions set effects on complicating pipeline design

Pipelining floating point instructionp g g p
• Multi-cycle operation of the pipeline execution phase
• Hazard detection and resolution
• Exception handling and FP pipeline performancep g p p p

An example pipeline: MIPS R4000
Next Lecture

Instruction level parallelism
Dynamic instruction scheduling

Mohamed Younis CMCS 611, Advanced Computer Architecture 19

Reading assignment includes sections A.5 & A.6, in the textbook

