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Lecture’s Overview
Previous Lecture:Previous Lecture:

Control hazards
•Limiting the effect of control hazards via branch prediction and delay 
•Static branch prediction techniques and performance
•Branch delay issues and performance

Exceptions handlingExceptions handling
•Categorizing of exception based on types and handling requirements 
•Issues of stopping and restarting instructions in a pipeline 
•Precise exception handling and the conditions that enable itPrecise exception handling and the conditions that enable it
•Instructions set effects on complicating pipeline design

This Lecture
Pipelining floating point operations
An example pipeline: MIPS R4000
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Floating-Point Pipeline
It is impractical to require that all MIPS floating point operations complete in 
one clock cycle (complex logic and/or very long clock cycle)

A floating-point pipeline differs from 
integer instructions pipeline in: EX stage not pipelined integer instructions pipeline in:

The EX cycle may be repeated as many 
times as need to complete the operation

There may be multiple floating point

stall if EX takes more  
than one cycle

There may be multiple floating-point 
functional units

Integer & FP 

A stall will occur if the instruction

g
instructions

to be issued will either cause a
structural or a data hazard
No instruction is assumed to enter 

Multi-cycle 
EX phase
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the EX stage as long the previous 
instruction has not finished it 



Multi-cycle FP Pipeline
Integer ALU7 t i li d Integer ALU7-stages pipelined 

FP multiple

Non-pipelined DIV 
operation stalling 
th h l i lithe whole pipeline 
for 24 cycle

Pipelined FP addition 
with latency of 3 cycles

MULTD IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB
ADDD  IF ID A1 A2 A3 A4 MEM WB   
LD   IF ID EX MEM WB     
SD IF ID EX MEM WB
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SD    IF ID EX MEM WB

Example: blue indicate where data is needed and red when result is available



Multi-cycle FP Pipeline EX Phase
Example: assume that floating point add, subtract and multiply can be

f d i t hil i t d FP di id tperformed in stages while integer and FP divide cannot
Latency: the number of intervening cycles between an instruction that 
produces a result and an instruction that uses it
Since most operations consume their operands at the beginning of the EX 
stage, latency is usually the number of stages in the EX an instruction uses
Naturally long latency increases the frequency of RAW hazards

F ti l it L t I iti ti i t l

Initiation (Repeat) interval: the number of cycles that must elapse between
issuing two operations of a given type

Functional unit Latency Initiation interval
Integer ALU 0 1 
Data memory (integer and FP loads) 1 1y ( g )
FP add 3 1 
FP multiply (also integer multiply) 6 1 
FP di id ( l i t di id ) 24 25
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FP divide (also integer divide) 24 25
 Example of typical latency of floating point operations



FP Pipeline Challenges
Issues:

Because the divide unit is not fully pipelined, structural hazards can occur
Because the instructions have varying running times, the number of register 
writes required in a cycle can be larger than 1
WAW hazards are possible, since instructions no longer reach WB in order
WAR hazards are NOT possible, since register reads are still taking place 
during the ID stageduring the ID stage
Instructions can complete in a different order than they were issued, causing 
problems with exceptions
Longer latency of operations makes stalls for RAW hazards more frequentLonger latency of operations makes stalls for RAW hazards more frequent

Clock cycle number 
Instruction 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
LD F4, 0(R2) IF ID EX MEM WB             
MULTD F0, F4, F6  IF ID stall M1 M2 M3 M4 M5 M6 M7 MEM WB     
ADDD F2, F0, F8   IF stall ID stall stall stall stall stall stall A1 A2 A3 A4 MEM  
SD 0(R2), F2    IF stall stall stall stall stall stall ID EX stall stall stall MEM 
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( ),

Example of RAW hazard caused by the long latency



Write-Caused Structural Hazard 

Clock cycle numberInstruction yInstruction 
1 2 3 4 5 6 7 8 9 10 11 

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB
…  IF ID EX MEM WB      
…   IF ID EX MEM WB     
ADDD F2, F4, F6    IF ID A1 A2 A3 A4 MEM WB
…  IF ID EX MEM WB
…      IF ID EX MEM WB  
LD F2, 0(R2)       IF ID EX MEM WB

At l 11 th MULTD ADDD d LD i t ti ill t t it b kAt cycle 11, the MULTD, ADDD and LD instructions will try to write back 
causing structural hazard if there is only one write port
Additional write ports are not cost effective since they are rarely used and it 
i b d d l h l h dis better to detect and resolve the structural hazard
Structural hazards can be detected at the ID stage and the instruction will be 
stalled to avoid a conflict with another at the WB
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Alternatively, structural hazards can be handled at the MEM or WB by 
rescheduling the usage of the write port



 

Clock cycle number Instruction 
1 2 3 4 5 6 7 8 9 10 11

WAW Data Hazards
1 2 3 4 5 6 7 8 9 10 11

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB
…  IF ID EX MEM WB      

IF ID EX MEM WB…  IF ID EX MEM WB
ADDD F2, F4, F6    IF ID A1 A2 A3 A4 MEM WB
…     IF ID EX MEM WB   
LD F2 0(R2) IF ID EX MEM WBLD F2, 0(R2)  IF ID EX MEM WB
….       IF ID EX MEM WB

WAW hazards can be corrected by either:
Stopping the latter instruction (LD in example) at the MEM until it is safe
Preventing the first instruction from overwriting the register 

Correcting WAW Hazards at cycle 11 is not problematic unless there is an
instruction between ADDD and LD that read F2 causing RAW hazard
WAW hazards can be detected at the ID stage and thus the first instruction
can be converted to no-op
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Since WAW hazards are generally very rare, designers usually go with the
simplest solution



Detecting Hazards
Hazards can occur among FP instructions and among FP and integer 
instructions 
Using separate register files for integer and FP limits potential hazards to just 
FP load and store instructions
Assuming all checks are to be performed in the ID phase, hazards can be 
detected through the following steps:

Check for structural hazards:Check for structural hazards:
Wait if the functional unit is busy (Divides in our case)
Make sure the register write port is available when needed

Check for a RAW data hazardCheck for a RAW data hazard
Requires knowledge of latency and initiation interval to decide when 
to forward and when to stall 

Check for a WAW data hazardCheck for a WAW data hazard
Write completion has to be estimated at the ID stage to check with
other instructions in the pipeline

Data hazard detection and forwarding logic can be derived from values
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Data hazard detection and forwarding logic can be derived from values
stored at the data stationary between the different stages



Maintaining Precise Exception
Pipelining FP instructions can cause out-of-order completion since FP 

ti diff t i l thoperations are different in length  
Although data hazard solutions prevent the effect of out-of-order instruction
completion on the semantics, exception handling can be problematic
Example: DIVD F0, F2, F4 ADDD and SUBD will complete

ADDD F10, F10, F8 before DIVD completes without
SUBD F12, F12, F14 causing any data hazards

What if an exception occurs while DIVD executes in a point of time 
after ADDD overwrites F10 !!

There are four possible approaches to deal with FP exception handling:  p pp p g
Settle for imprecise exceptions (restrict # active FP instructions)

IEEE floating point standard requires precise exceptions
Some supercomputers still uses this approachp p pp
Some machines offer slow precise and fast imprecise exceptions

Buffer the results of all operations until previous instructions complete
Complex and expensive design (many comparators and large MUX)
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p p g ( y p g )
History or future register file are practical implementations that allow
for restoring original machine state in case of exception 



Precise Exception Approaches (Cont.)
Four possible approaches to deal with FP exception handling (cont.): 

Allow imprecise exceptions and get the handler to clean up any miss
Simply save PC and some state about the interrupting instruction
and all out-of-order completed instructionsp
The trap handler will consider the state modification caused by 
finished instructions and prepare machine to resume correctly
Issues: consider the following exampleIssues: consider the following example
Instruction1:    A long-running instr. that eventually get interrupted
Instructions 2 … (n-1) :   A series of instructions that are not complete
Instruction n :  An instruction that is finishedn

The trap handler will have a complex job to deal with
The compiler can simplify the problem by grouping FP instructions 
so that the trap does not have to worry about unrelated instructions so t at t e t ap does ot a e to o y about u e ated st uct o s

Allow instruction issue to continue only if previous instruction are 
guaranteed to cause no exceptions:

Mainly applied in the execution phase
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Mainly applied in the execution phase
Used on MIPS R4000 and Intel Pentium



Performance of FP Pipeline
A b f

Add/S bt t

Average number of 
stalls per instruction 
mainly affected by 
latency and number of Add/Subtract

Compares

Multiply
ch

m
ar

k

latency and number of 
cycles before results 
are used but not by 
instruction frequency

Divide

Divide Structural

P 
SP

EC
 B

en
cinstruction frequency 

(except for divide)

Stalls are mainly 
caused by: Fcaused by:

Latency of the divide
instruction 

RAW hazards

WAW hazards are 
possible but rare in 
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practice



Performance of FP Pipeline (Cont.) 

FP results stall

FP Compare stall

ch
m

ar
k

FP Compare stall

Branch/Load stalls

FP Structural

P 
SP

EC
 B

en
c

FP

The total number of stalls/instr. range from 0.65 to 1.21 with average 0.87
FP result stalls dominate in all cases with average of 0 71 (82% of all stalls)
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FP result stalls dominate in all cases with average of 0.71 (82% of all stalls)
Compares generate an average of 0.1 stalls and are second largest source



MIPS 4000 Pipeline
Implements the MIPS-3 64-bit instruction
Uses 8 stages pipeline through pipelining instruction and data cache access
Deeper pipeline allows for higher clock rate but increases load/branch delays  

IF Fi t h lf f i t f t h PC l ti i iti ti f i t ti hIF: First half of instr. fetch; PC selection, initiation of instruction cache access
IS: Second half of the instruction fetch completing instruction cache access
RF: Instr. Decode, register fetch, hazard checking and instr. cache hit detection
EX: ALU operations, effective address calculation, and condition evaluation
DF: Data fetch, first half of data cache access
DS: Second half of data fetch, completion of data cache access
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TC: Tag check, determine whether the data cache access hit
WB: Write back for loads and register-register operations



Load Delays

Data value are available at the end of the DS cycle cause a two cycle delayData value are available at the end of the DS cycle, cause a two cycle delay 
for load instructions
Pipelined cache access increases the need for forwarding and complicates 
the forwarding logic
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the forwarding logic 
A cache miss will stall the pipeline additional one (or more) cycles



Branching Delays

Branch conditions are computed during EX stage extending the basic branch 
delay to 3 cycles 
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MIPS allows for a single-cycle delay branching and a predict-not-taken 
strategy for the remaining two branching delay cycles



MIPS 4000 FP Pipeline
Three FP functional units: adder, multiplier and divider, with the adder logic 
serving as the final step of the a multiply and divideserving as the final step of the a multiply and divide

Stage Functional Unit Description
A FP adder Mantissa ADD stage
D FP Divider Divide pipeline stageD FP Divider Divide pipeline stage
E FP Multiplier Exception test stage
M FP Multiplier First stage of multiplier
N FP Multiplier Second stage of multiplierN FP Multiplier Second stage of multiplier
R FP adder Rounding  stage
S FP adder Operand shift stage
U Unpack FP numbers

The FP functional unit can be thought as having eight different stages, combined 
in different order to execute various FP operations
An instruction can use a stage zero or multiple times and in different orders

FP Instruction Latency Pipeline stages
Add/Subtract 4 U, S+A, A+R, R+S
Multiply 8 U E+M M M M N N+A R

g p
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Multiply 8 U, E+M, M, M, M, N, N+A, R
Divide 36 U, A, R, D27, D+A, D+R, D+A, D+R, A, R
Compare 3 U, A, R



Base

Performance of MIPS Pipeline
Load stalls
Branch stalls
FP result stalls

in
e 

C
PI

FP structural stalls

Pi
pe

li
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SPEC92 benchmark



Conclusion
Summary

E ti h dliExceptions handling
• Categorizing of exception based on types and handling requirements 
• Issues of stopping and restarting instructions in a pipeline 
• Precise exception handling and the conditions that enable it
• Instructions set effects on complicating pipeline design

Pipelining floating point instructionp g g p
• Multi-cycle operation of the pipeline execution phase 
• Hazard detection and resolution 
• Exception handling and FP pipeline performancep g p p p

An example pipeline: MIPS R4000
Next Lecture

Instruction level parallelism
Dynamic instruction scheduling
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Reading assignment includes sections A.5 & A.6, in the textbook


