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Lecture’s Overview
Previous Lecture:Previous Lecture:

Type and size of operands
(Famous data types, effect of operand size on design complexity)

Encoding the instruction set
(Fixed, variable and hybrid encoding, the store program concept)

Th l f th ilThe role of the compiler
(Compilation process, compiler optimization, linking and loading)

Effect of ISA on Compiler ComplexityEffect of ISA on Compiler Complexity
(Regularity, Primitives, not solutions, Simplify trade-offs, Static binding)

This Lecture:
• An overview of pipelining
• Pipeline performance
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p p
• Pipelined hazards



Sequential Laundry
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Washer takes 30 min, Dryer takes 40 min, folding takes 20 min
Sequential laundry takes 6 hours for 4 loads
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If they learned pipelining, how long would laundry take?
* Slide is courtesy of Dave Patterson



Pipelined Laundry
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Pipelining means start work as soon as possible

Dr
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Pipelined laundry takes 3.5 hours for 4 loads
* Slide is courtesy of Dave Patterson



Pipelining Lessons
Pi li i d ’t h l l tPipelining doesn’t help latency

of single task, it helps throughput
of entire workload

6 PM 7 8 9
Time

Pipeline rate limited by slowest
pipeline stage
Multiple tasks operating T

Time
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p p g

simultaneously using different 
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Potential speedup = Number
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stages reduces speedup
Time to “fill” pipeline and time to 

“drain” it reduce speedup
D
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Stall for Dependencies
* Slide is courtesy of Dave Patterson



Basics of a RISC Instruction Set
RISC architectures are characterized by the following featuresRISC architectures are characterized by the following features 
that dramatically simplifies the implementation:
1. All ALU operations apply only on data in registers 

2. Memory is affected only by load and store operations

3. Instructions follow very few formats and typically are of the same size

All MIPS instructions are 32 bits, following one of three  
formats: 061116212631formats:

R-type
op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits
016212631

I-type
t t dd

02631

op rs rt immediate
6 bits 16 bits5 bits5 bits
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J-type
op target address
6 bits 26 bits

* Slide is courtesy of Dave Patterson



MIPS Instruction format
Register-format instructions:

op: Basic operation of the instruction traditionally called opcode

op rs functshamtrdrt
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op: Basic operation of the instruction, traditionally called opcode
rs: The first register source operand
rt: The second register source operand
rd: The register destination operand, it gets the result of the operationg p g p
shmat: Shift amount (explained in future lectures)
funct: This field selects the specific variant of the operation of the op field

MIPS assembly language includes two conditional branching instructionsMIPS assembly language includes two conditional branching instructions
using PC -relative addressing:

beq register1, register2, L1 # go to L1 if (register1) = (register2)
bne register1 register2 L1 # go to L1 if (register1) ≠ (register2)bne register1, register2, L1 # go to L1 if (register1) ≠ (register2)

Examples: add $t2, $ t1, $ t1 # Temp reg $t2 = 2 $t1 
sub $t1, $s3, $s4 # Temp reg $t1 = $s3 - $s4 
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and $t1, $ t2, $ t3 # Temp reg $t1 = $t2 . $t
bne $s3, $s4, Else # if $s3 ≠ $s4 jump to Else



MIPS Instruction format
Immediate-type instructions:

The 16 bit address means a load word instruction can load a word within a

op rs addressrt
6 bits 5 bits 5 bits 16 bits

The 16-bit address means a load word instruction can load a word within a 
region of ± 215 bytes of the address in the base register
Examples: lw $t0, 32($s3) , sw $t1, 128($s3)

MIPS handle 16-bit constant efficiently by including the constant value in the 
address field of an I-type instruction (Immediate-type)

addi $sp, $sp, 4 #$sp = $sp + 4
For large constants that need more than 16 bits, a load upper-immediate (lui) 
instruction is used to concatenate the second part 

001111 00000 01000 0000  0000  1111  1111lui $t0, 255

Contents
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0000  0000  1111  1111 0000  0000  0000  0000of $t0 after
execution



Addressing in Branches & Jumps
I-type instructions leaves only 16 bits for address reference limiting the size
of the jumpof the jump
MIPS branch instructions use the address as an increment to the PC
allowing the program to be as large as 232 (called PC-relative addressing)
Since the program counter gets incremented prior to instruction executionSince the program counter gets incremented prior to instruction execution, 
the branch address is actually relative to (PC + 4)
MIPS also supports an J-type instruction format for large jump instructions 

The 26-bit address in a J-type instruct. is concatenated to upper 8 bits of PC

op address
6 bits 26 bits

0 19 19 09 3280000
0 9 9 09 3280004
0 9 22 09 3280008

35 9 8 080012

Loop: add $t1, $s3, $s3
add $t1, $t1, $t1
add  $t1, $t1, $s6
lw $t0 0($t1)

0 19 20 019 3280020

35 9 8 080012

2 8000080024

5 8 21 880016
lw  $t0, 0($t1)
bne $t0, $s5, Exit
add $s3, $s3, $s4
j Loop
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35 9 8 080012
80028 . . .Exit:



A Simple Implementation of MIPS
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Single-cycle Instruction Execution

Mohamed Younis CMCS 611, Advanced Computer Architecture 11



Multi-Cycle Implementation of MIPS
Instruction fetch cycle (IF)
IR Mem[PC];    NPC PC + 4

Instruction decode/register fetch cycle (ID)
A R [IR ] B R [IR ] I ((IR )16 ##IR )A Regs[IR6..10];        B Regs[IR11..15];        Imm ((IR16)16 ##IR16..31)

Execution/effective address cycle (EX)
Memory ref: ALUOutput A + Imm;
Reg-Reg ALU: ALUOutput A func B;
Reg-Imm ALU: ALUOutput A op Imm;
Branch: ALUOutput NPC + Imm;       Cond (A op 0)( )

Memory access/branch completion cycle (MEM)
Memory ref: LMD Mem[ALUOutput]    or    Mem(ALUOutput] B;
Branch: if (cond) PC ALUOutput;Branch: if (cond) PC ALUOutput;

Write-back cycle (WB)
Reg-Reg ALU: Regs[IR16..20] ALUOutput;
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Reg-Imm ALU: Regs[IR11..15] ALUOutput;
Load: Regs[IR11..15] LMD;



Multi-cycle Instruction Execution
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Stages of Instruction Execution
C l 1 C l 2 C l 3 C l 4 C l 5Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WBLoad

The load instruction is the longest
All instructions follows at most the following five steps:All instructions follows at most the following five steps:

Ifetch: Instruction Fetch
• Fetch the instruction from the Instruction Memory and update PC

Reg/Dec: Registers Fetch and Instruction Decode
Exec: Calculate the memory address
Mem: Read the data from the Data Memory
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y
WB: Write the data back to the register file

* Slide is courtesy of Dave Patterson



Instruction Pipelining
Start handling of next instruction while the current instruction is in progress

Time

Pipelining is feasible when different devices are used  at different stages of 
instruction execution

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WB

IFetch Dec Exec Mem WBProgram Flow

stages pipe ofNumber 
nsinstructio between Time

nsinstructio between Time ednonpipelin
pipelined =
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Pipelining improves performance by increasing instruction throughputPipelining improves performance by increasing instruction throughput



Single Cycle, Multiple Cycle, vs. Pipeline
Cycle 1 Cycle 2

Clk

Single Cycle Implementation:
Load Store Waste

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Load Store Waste

Clk

Multiple Cycle Implementation:
Load Store R-type
Ifetch Reg Exec Mem Wr Ifetch Reg Exec Mem

Load Store

Pipeline Implementation:

Ifetch
R-type

Load Ifetch Reg Exec Mem Wr

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore
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e c eg ec e WS o e

Ifetch Reg Exec Mem WrR-type
* Slide is courtesy of Dave Patterson



Example of Instruction Pipelining
2 4 6 8 10 12 14 16 18

Program
ti

Instruction
fetch Reg ALU Data

access Reg

Time

lw $1, 100($0)

2 4 6 8 10 12 14 16 18execution
order
(in instructions)

8 ns Instruction
fetch Reg ALU Data

access Reg

8 ns
Instruction

fetch

lw $2, 200($0)

lw $3, 300($0)

...

Time between first 
& fourth instructions 
is 3 × 8 = 24 ns 8 ns

2 4 6 8 10 12 14
Time

Program
execution
order
(in instructions)

is 3 × 8 = 24 ns

Instruction
fetch Reg ALU Data

access Reglw $1, 100($0)

lw $2, 200($0) 2 ns
Instruction

fetch Reg ALU Data
access Reg

(in instructions)
Time between first 
& fourth instructions 
is 3 × 2 = 6 ns

lw $3, 300($0) 2 ns Instruction
fetch Reg ALU Data

access Reg

2 ns 2 ns 2 ns 2 ns 2 ns
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Ideal and upper bound for speedup is number of stages in the pipelineIdeal and upper bound for speedup is number of stages in the pipeline



Pipeline Performance
Pipeline increases the instruction throughput but does not reduce the 
execution time of the individual instruction 
Execution time of the individual instruction in pipeline can be slower due: 

Additional pipeline control compared to none pipeline execution
Imbalance among the different pipeline stages

Suppose we execute 100 instructions:
Single Cycle MachineSingle Cycle Machine
• 45 ns/cycle  x 1 CPI x 100 inst = 4500 ns

Multi-cycle Machine
• 10 ns/cycle x 4 2 CPI (due to inst mix) x 100 inst = 4200 ns10 ns/cycle x 4.2 CPI (due to inst mix) x 100 inst  4200 ns

Ideal 5 stages pipelined machine
• 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

Due to fill and drain effects of a pipeline ideal performance can be achieved 
only for very large instructions

Example: a sequence of 1000 load instructions would take 5000 cycles on a 
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multi-cycle machine while taking 1004 on a pipeline machine 
⇒ speedup = 5000/1004 ≅ 5



Pipeline Datapath
Data Stationary

Every stage must be completed in one clock cycle to avoid stalls
Values must be latched to ensure correct execution of instructions

Mohamed Younis CMCS 611, Advanced Computer Architecture 19

The PC multiplexer has moved to the IF stage to prevent two instructions
from updating the PC simultaneously (in case of branch instruction)



S t a g e  A n y  In s t r u c t io n  
IF / ID IR M E M [P C ]

Pipeline Stage Interface
 

IF  
IF / ID . IR  M E M [P C ]  ;
IF / ID .N P C ,P C   (  i f  (  ( E X /M E M .o p c o d e  = =  b r a n c h )  &  E X /M E M .c o n d )  
{ E X /M E M .A L U O u tp u t }  e ls e  {  P C  +  4  }  )  ;  

 
ID  

ID /E X .A  =  R e g s [ IF / ID .  IR  6 ..1 0 ] ;  ID /E X .B  R e g s [ IF / ID .  IR  1 1 ..1 5 ] ;  
ID /E X .N P C  IF / ID .N P C  ;  ID /E X . IR  IF / ID . IR ;  

1 6ID /E X . Im m   ( IF / ID .  IR  1 6 ) 1 6  # #  IF / ID .  IR  1 6 ..3 1 ;

 A L U   L o a d  o r  S t o r e   B r a n ch   
 
 

E X /M E M . IR  =  ID /E X . IR ;  
E X /M E M .  A L U O u tp u t  
ID /E X A fu n c ID /E X B ;

E X /M E M . IR   ID /E X . IR ;  
E X /M E M .A L U O u tp u t  
ID /E X A + ID /E X Im m ;

 
E X /M E M .A L U O u tp u t  
ID /E X N P C + ID /E X Im m ; 

 
E X  

ID /E X .A  fu n c  ID /E X .B ;
O r  
E X /M E M .A L U O u tp u t  
ID /E X .A  o p  ID /E X . Im m ;  
E X /M E M .c o n d   0 ;  

ID /E X .A  +  ID /E X . Im m ;
 
 
 
 
E X /M E M .c o n d 0 ;

ID /E X .N P C  +  ID /E X . Im m ;
 
 
 
 
E X /M E M .c o n dE X /M E M .c o n d   0 ;  

E X /M E M .B  ID /E X .B ;  
E X /M E M .c o n d  
( ID /E X .A  o p  0 ) ;  

 
 
 

M E M  

M E M /W B . IR  E X /M E M . IR ;  
M E M /W B .A L U O u tp u t  
E X /M E M .A L U O u tp u t;  

M E M /W B . IR   E X /M E M . IR ;  
M E M /W B .L M D   
M e m [E X /M E M .A L U O u tp u t]  ;  
O r

 

O
M e m [E X /M E M .A L U O u tp u t]   
E X /M E M .B  ;  
 

 
 

R e g s [M E M /W B .  IR  1 6 ..2 0 ]    
E M /W B .A L U O u tp u t;  

F o r  lo a d  o n ly :  
R e g s [M E M /W B .  IR  1 1 1 5 ]  

 

Mohamed Younis CMCS 611, Advanced Computer Architecture 20

W B  O r  
R e g s [M E M /W B .  IR  1 1 ..1 5 ]   
M E M /W B .A L U O u tp u t ;  

g [ 1 1 ..1 5 ]
M E M /W B .L M D ;  



Pipeline Hazards
Pipeline hazards are cases that affect instruction execution          

semantics and thus need to be detected and corrected
Hazards types

Structural hazard: attempt to use a resource two different ways at same timeStructural hazard: attempt to use a resource two different ways at same time
E.g., combined washer/dryer would be a structural hazard or folder busy  

doing something else (watching TV)
Si l f i t ti d d tSingle memory for instruction and data

Data hazard: attempt to use item before it is ready
E.g., one sock of pair in dryer and one in washer; can’t fold until get sock 

from washer through dryer
instruction depends on result of prior instruction still in the pipeline

Control hazard: attempt to make a decision before condition is evaluated
E.g., washing football uniforms and need to get proper detergent level; 

need to see after dryer before next load in
branch instructions
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branch instructions

Hazards can always be resolved by waiting
* Slide is courtesy of Dave Patterson



Single Memory is a Structural Hazard
Time (clock cycles)

I

Time (clock cycles)

A

M R M RI
n
s
t

Load

Instr 1

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

r.

O
r

Instr 1

Instr 2

U

A
LUMem Reg Mem Reg

Mem
r
d
e
r

Instr 3

I t 4

A
LUReg Mem Reg

A
LMem Reg Mem RegInstr 4

LUMem Reg Mem Reg
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Can be easily detected Resolved by inserting idle cycles
* Slide is courtesy of Dave Patterson



Stalls & Pipeline Performance
dunpipeline  timeninstructio AveragepipeliningfromSpeedup =

dunpipeline cycleClock dunpipeline CPI
pipelined  timeninstructio Average

pipelining from Speedup

×=

=

pipelinedcycleClock pipelinedCPI
                                       

Ideally the CPI of the pipeline execution is 1 (after fill-up), thus

CPI pipelined = Ideal CPI + Pipeline stall clock per instruction

= 1 + Pipeline stall clock per instruction

pipelined cycleClock 
dunpipeline cycleClock 

ninstructioper  cycles stall  Pipeline 1
dunpipeline CPI  Speedup ×

+
=

1

Assuming all pipeline stages are balanced, then
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depthPipeline
ninstructioper  cycles stall  Pipeline 1

1  Speedup ×
+

=



Data Hazard
Time (clock cycles)

I
n

add r1,r2,r3
IF ID/RF EX MEM WBA

LUIm Reg Dm Reg

n
s
t
r.

sub r4,r1,r3

A
LUIm Reg Dm Reg

A
O
r
d

and r6,r1,r7

or r8 r1 r9

A
LUIm Reg Dm Reg

Im

A
LUReg Dm Regd

e
r

or   r8,r1,r9

xor r10,r1,r11

U

A
LUIm Reg Dm Reg

Mohamed Younis CMCS 611, Advanced Computer Architecture 24

Dependencies backwards in time are hazardsDependencies backwards in time are hazards
* Slide is courtesy of Dave Patterson



Data Hazard Solution
Time (clock cycles)

I

Time (clock cycles)

add r1,r2,r3
IF ID/RF EX MEM WBA

LUIm Reg Dm Reg
I
n
s
t sub r4,r1,r3

A
LUIm Reg Dm Reg

r.

O
r

and r6,r1,r7
A

LUIm Reg Dm Reg

A

d
e
r

or   r8,r1,r9

10 1 11

Im

A
LUReg Dm Reg

A
LIm Reg D Regxor r10,r1,r11

LUIm Reg Dm Reg
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“Forward” result from one stage to another
* Slide is courtesy of Dave Patterson



Resolving Data Hazards for Loads
Time (clock cycles)

l 1 0( 2)
IF ID/RF EX MEM WBA

L

Reg Reglw r1,0(r2)

b 4 1 3

LUIm Reg Dm Reg

A
L

Im Reg D Regsub r4,r1,r3

LUIm Reg Dm Reg

Dependencies backwards in time are hazards
Cannot solve with forwarding 
M t d l / t ll i t ti d d t l d
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Must delay/stall instruction dependent on loads
* Slide is courtesy of Dave Patterson



Stall: wait until decision is clear

Control Hazard
Stall: wait until decision is clear

Its possible to move up decision to 2nd stage by adding hardware to 
check registers as being read

I
n
s
t

Time (clock cycles)

Add

A
LUMem Reg Mem Reg

t
r.

O

Add

Beq

U

A
LUMem Reg Mem Reg

r
d
e
r

q

Load

A
LUReg Mem RegMemStall

r
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Impact: 2 clock cycles per branch instruction ⇒ slow
* Slide is courtesy of Dave Patterson



Predict: guess one direction then back up if wrong
Control Hazard Solution

Predict not taken
I
n

Time (clock cycles)

s
t
r.

Add

A
LUMem Reg Mem Reg

A

O
r
d

Beq

Load
A

LUMem Reg Mem Reg

A

e
r

Load Mem

A
LUReg Mem Reg

Impact: 1 clock cycles per branch instruction if right, 2 if wrong 
(right - 50% of time)
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(right  50% of time)
More dynamic scheme: history of 1 branch (- 90%)

* Slide is courtesy of Dave Patterson



Redefine branch behavior (takes place after next instruction) 

Control Hazard Solution
( p )

“delayed branch”
I
n

Time (clock cycles)
n
s
t
r.

Add

A
LUMem Reg Mem Reg

O
r
d

Beq

A
LUMem Reg Mem Reg

A

e
r

Misc Mem

A
LUReg Mem Reg

L d Mem

A
LR Mem RegLoad Mem LUReg Mem Reg

Impact: 0 clock cycles per branch instruction if can find
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Impact: 0 clock cycles per branch instruction if can find 
instruction to put in “slot” (- 50% of time)

* Slide is courtesy of Dave Patterson



Conclusion
Summary

An overview of Pipelining
• Pipelining concept is natural
• Start handling of next instruction while current one is in progressg p g

Pipeline performance
• Performance improvement by increasing instruction throughput
• Ideal and upper bound for speedup is number of stages in pipeline

Pipelined hazards
• Structural, data and control hazards,
• Hazard resolution techniques

Next Lecture
Data and control Hazards
Pipelined control
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Reading assignment includes Appendix A.1 & A.2 in the textbook


