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Introduction to Pipelining
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Lecture’s Overview

. Previous Lecture:

=» Type and size of operands
(Famous data types, effect of operand size on design complexity)

=>» Encoding the instruction set
(Fixed, variable and hybrid encoding, the store program concept)

=>» The role of the compiler
(Compilation process, compiler optimization, linking and loading)

=>» Effect of ISA on Compiler Complexity

(Regularity, Primitives, not solutions, Simplify trade-offs, Static binding)

] This Lecture:
* An overview of pipelining
* Pipeline performance
* Pipelined hazards
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Sequential Laundry
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1 Washer takes 30 min, Dryer takes 40 min, folding takes 20 min
1 Sequential laundry takes 6 hours for 4 loads
4 If they learned pipelining, how long would laundry take?

AN * Slide is courtesy of Dave Patterson
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Pipelined Laundry
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1 Pipelining means start work as soon as possible
4 Pipelined laundry takes 3.5 hours for 4 loads
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Pipelining Lessons

O Pipelining doesn’t help latency
of single task, it helps throughput
of entire workload

1 Pipeline rate limited by slowest
pipeline stage
O Multiple tasks operating

simultaneously using different
resources

1 Potential speedup = Number
pipe stages

O Unbalanced lengths of pipe
stages reduces speedup

O Time to “fill” pipeline and time to
“drain” it reduce speedup

O Stall for Dependencies

* Slide is courtesy of Dave Patterson

Mohamed Younis

CMCS 611, Advanced Computer Architecture 5



Basics of a RISC Instruction Set

d RISC architectures are characterized by the following features
that dramatically simplifies the implementation:
1. All ALU operations apply only on data in registers
2. Memory is affected only by load and store operations

3. Instructions follow very few formats and typically are of the same size

4 All MIPS instructions are 32 bits, following one of three

formats: 31 26 21 16 11 6 0
op rs rt rd shamt funct
R-type o 6 b|t$26 5 blts;21 5 b|t$16 5 bits 5 bits 6 bits .
op rs rt immediate
|_type 6 bits 5 bits 5 bits 16 bits
31 26 0
op target address
J-type 6 bits 26 bits
s\ * Slide is courtesy of Dave Patterson
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MIPS Instruction format

O Register-format instructions:

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
op: Basic operation of the instruction, traditionally called opcode
IS: The first register source operand
rt. The second register source operand
rd. The register destination operand, it gets the result of the operation

shmat. Shift amount (explained in future lectures)
funct.  This field selects the specific variant of the operation of the op field

O MIPS assembly language includes two conditional branching instructions
using PC -relative addressing:
beq register1, register2, L1 # go to L1 if (register1) = (register2)
bne register1, register2, L1 # go to L1 if (register1) = (register2)

d Examples: add $t12,$t1,$t1  # Temp reg $t2 = 2 $t1
sub $t1, $s3, $s4  # Temp reg $t1 = $s3 - $s4
and  $t1,$12, $t3 # Temp reg $t1 = $t2 . $t
/\ bne $s3, $s4, Else #if $s3 = $s4 jump to Else
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MIPS Instruction format

® Immediate-type instructions:

op rs rt address

6 bits 5 bits 5 bits 16 bits

1 The 16-bit address means a load word instruction can load a word within a
region of + 215 bytes of the address in the base register

d Examples: lw $t0, 32($s3) , SW $t1, 128($s3)

O MIPS handle 16-bit constant efficiently by including the constant value in the
address field of an I-type instruction (Immediate-type)
addi  $sp, $sp, 4 #3sp = $sp + 4

O For large constants that need more than 16 bits, a load upper-immediate (/ui)
instruction is used to concatenate the second part

lui $t0, 255 001111 00000 01000 ‘ 0000 0000 1111 1111
Contents /

of $t0 after 0000 0000 1111 1111 0000 0000 0000 0000
execution

/o \
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Addressing in Branches & Jumps

O I-type instructions leaves only 16 bits for address reference limiting the size
of the jump

O MIPS branch instructions use the address as an increment to the PC
allowing the program to be as large as 2” (called PC-relative addressing)

O Since the program counter gets incremented prior to instruction execution,
the branch address is actually relative to (PC + 4)

O MIPS also supports an J-type instruction format for large jump instructions

op address

6 bits 26 bits

O The 26-bit address in a J-type instruct. is concatenated to upper 8 bits of PC

Loop: add $t1, $s3, $s3 80000 0 19 19 9 0 32
add $t1, $t1, $t1 80004 0 9 9 9 0 32
add $t1, $t1, $s6 80008 0 9 22 9 0 32
Iw $t0, 0($t1) 80012 35 9 8 0
bne $t0, $s5, Exit 80016 5 8 21 8
add $s3, $s3, $s4 80020 0 19 20 19 0 32
j Loop 80024 2 80000

Exit: 80028 .

80012 35 9 8 0
A

P
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A Simple Implementation of MIPS

2}

Inetrudic ]
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Single-cycle Instruction Execution
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Multi-Cycle Implementation of MIPS

Instruction fetch cycle (IF)
IR < Mem[PC];, NPC < PC+4

Instruction decode/register fetch cycle (ID)
A € Regs[IRg 10]; B < Regs[IRy 4s; Imm < ((IR46)" ##IR 5 31)

Execution/effective address cycle (EX)

Memory ref: ALUOutput < A+ Imm;

Reg-Reg ALU: ALUOutput < A func B;

Reg-Imm ALU: ALUOutput < A op Imm;

Branch: ALUOutput € NPC + Imm; Cond < (Aop 0)
Memory access/branch completion cycle (MEM)

Memory ref: LMD < Mem[ALUOutput] or Mem(ALUOutput] < B;
Branch: if (cond) PC <ALUOutput;

Write-back cycle (WB)

Reg-Reg ALU: Regs[IRs 50] € ALUOutput;

Reg-Imm ALU: Regs[IR1 15] € ALUOutput;

Load: Regs[IRy 15] € LMD;
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Multi-cycle Instruction Execution
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Stages of Instruction Execution

Cycle 1 ECycIe 2 Cycle 3 ECycIe 4 ECycIe 5

Load Ifetch Reg/Dec Exec “ Mem “ WB

 The load instruction is the longest

4 All instructions follows at most the following five steps:

=» Ifetch: Instruction Fetch
Fetch the instruction from the Instruction Memory and update PC

=>» Reg/Dec: Registers Fetch and Instruction Decode
= Exec: Calculate the memory address

= Mem: Read the data from the Data Memory

= \WB: Write the data back to the register file

AN * Slide is courtesy of Dave Patterson
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Instruction Pipelining

O Start handling of next instruction while the current instruction is in progress

O Pipelining is feasible when different devices are used at different stages of
instruction execution

~Time

IFetchIDec IExec IMem IWB

IFetch] Dec

IExec II\/Iem IWB

| Program Flow

Time between instructions

IFetchIDeC IExec II\/Iem IWB

IFetchIDec IExec IMem IWB

IFetchIDec IExeC IMem IWB

Time between instructions

nonpipelined

pipelined =

Number of pipe stages

Pipelining improves performance by increasing instruction throughput

Ny Mohamed Younis
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Slngle Cycle, Multlple Cycle, vs. Plpellne

Cycle 1 _ Cycle 2 :
CIk I I I I I _
Single Cycle Implementation: :
Load I Store Waste

 Cycle 1 : Cycle 2: Cycle 3} Cycle 4: Cycle 5: Cycle 6: Cyele 7; Cyele 8: Cyele 9 Cyclg 10

Clk | I I I I _ I I I I _

Multip:le Cycle Implementation:

Load Store R-type
Ifetchl Reg I Exec I Mem I Wr I Ifetchl Reg I Exec I Mem I Ifetch

Pipeline Implementation:

Load Ifetchl Reg IExec IMem I Wr

Store Ifetchl Reg I Exec I Mem I Wr

R-type Ifetchl Reg IExec IMem I Wr

AN * Slide is courtesy of Dave Patterson
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Example of Instruction Pipelining

Program
execution _ 2 4 6 8 10 12 14 16 18
order Time T T T l T T | | >
(in instructions)

wst, 10080) "o ool avu | 222 [

“ >l Instruction Data

lw $2, 200($0) 8 ns TION Reg|  ALU | _0%@ [ Reg

W $3. 300(50) Time bet_ween flrst < — *{insructon
Y & fourth instructions ate

is3 x8=24ns s

Program
execution . 2 4 6 8 1 0 1 2 14 -
order Time [ I [ [ | | I v
(in instructions) - Ti bet first

w $1, 100($0)  ["SHruotion Reg[ AW | D@ fReg ime between 1irs

& fourth instructions
+—P H .
w $2,20030)  2ns | "ol |Reg| AU | 0% | Reg is3x2=6ns
+—P ;

lw $3, 300(30) 2ns | "omdcton Reg[ AL [ D2 [Reg

v
+— P rt+— P ¢+— > ———— P ¢——p
2ns 2ns 2ns 2ns 2ns

Ideal and upper bound for speedup is number of stages in the pipeline
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Pipeline Performance

O Pipeline increases the instruction throughput but does not reduce the
execution time of the individual instruction

O Execution time of the individual instruction in pipeline can be slower due:
=>» Additional pipeline control compared to none pipeline execution
=» Imbalance among the different pipeline stages

O Suppose we execute 100 instructions:

=>» Single Cycle Machine
« 45 ns/cycle x1 CPIl x 100 inst = 4500 ns
=>» Multi-cycle Machine
10 ns/cycle x 4.2 CPI (due to inst mix) x 100 inst = 4200 ns

=>» ldeal 5 stages pipelined machine
10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

O Due to fill and drain effects of a pipeline ideal performance can be achieved
only for very large instructions

Example: a sequence of 1000 load instructions would take 5000 cycles on a
multi-cycle machine while taking 1004 on a pipeline machine
/\ = speedup = 5000/1004 = 5
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Pipeline Datapath

.......................... Data Stationary
IFAD, e |DIE§ ............................................. — o
4 e

M

u E Branch

X > Zoro? taken _

IRg..10
PC L M)
IR
Instruction| IR ﬂ' | y
memary n MEM/WELIR Registers ,\fﬂ:xj A N
> M Data
B o Memory | M
T ) . N Ny
18 { sign 32
' extend -

» Every stage must be completed in one clock cycle to avoid stalls
» Values must be latched to ensure correct execution of instructions
» The PC multiplexer has moved to the IF stage to prevent two instructions
/\ from updating the PC simultaneously (in case of branch instruction)
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Pipeline Stage Interface

Stage Any Instruction
IF/ID.IR €« MEM[PC] ;
IF IF/ID.NPC,PC ¢« (if ((EX/MEM.opcode == branch) & EX/MEM.cond)
{EX/MEM.ALUOutput} else { PC + 4} ) ;
ID/EX.A = Regs[IF/ID. IR ¢.10]; ID/EX.B € Regs[IF/ID. IR 11.1s];
ID ID/EX.NPC < IF/ID.NPC ; ID/EX.IR € IF/ID.IR;
ID/EX.Imm € (IF/ID. IR 16) '® ## IF/ID. IR 16.31;
ALU Load or Store Branch
EX/MEM.IR = ID/EX.IR; EX/MEM.IR € ID/EX.IR;
EX/MEM. ALUOQutput « EX/MEM.ALUOutput &« EX/MEM.ALUOutput <«
ID/EX.A func ID/EX.B; ID/EX.A + ID/EX.Imm; ID/EX.NPC + ID/EX.Imm;
Or
EX EX/MEM.ALUOutput €
ID/EX.A op ID/EX.Imm;
EX/MEM.cond & O;
EX/MEM.cond & O; EX/MEM.cond &
EX/MEM.B < ID/EX.B; (ID/EX.A op 0);
MEM/WB.IR €« EX/MEM.IR; MEM/WB.IR € EX/MEM.IR;
MEM/W B.ALUOutput ¢« MEM/WB.LMD <«
EX/MEM.ALUOutput; Mem[EX/MEM.ALUOutput] ;
MEM Or
Mem[EX/MEM.ALUOutput] €«
EX/MEM.B ;
Regs[MEM/W B. IR 16.20] € For load only:
EM/W B.ALUOutput; Regs[MEM/W B. IR 11.15] €
W B Or MEM/WB.LMD;

Regs[MEM/W B. IR 11.15] €
MEM/W B.ALUOutput ;
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Pipeline Hazards

d Pipeline hazards are cases that affect instruction execution
semantics and thus need to be detected and corrected

1 Hazards types
attempt to use a resource two different ways at same time

=>» E.g., combined washer/dryer would be a structural hazard or folder busy
doing something else (watching TV)

=>» Single memory for instruction and data
attempt to use item before it is ready

=>» E.g., one sock of pair in dryer and one in washer; can’t fold until get sock
from washer through dryer

=» instruction depends on result of prior instruction still in the pipeline
attempt to make a decision before condition is evaluated

= E.g., washing football uniforms and need to get proper detergent level,
need to see after dryer before next load in

=» branch instructions
 Hazards can always be resolved by waiting

AN * Slide is courtesy of Dave Patterson
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Single Memory is a Structural Hazard

Time (clock cycles)

Mem ..[ Reg|:

Load

| Mems

Instr 1

Instr 2 MemI Reg :\;r.lMemI{ Regé

Instr 3 Meml_;[ Reg .IMemr

nstea | [y e

 Can be easily detected ] Resolved by inserting idle cycles

AN * Slide is courtesy of Dave Patterson
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Stalls & Pipeline Performance

Average instruction time unpipelined

Speedup from pipelining =
P P Pip . Average instruction time pipelined

_ CPI unpipelined y Clock cycle unpipelined

CPI pipelined Clock cycle pipelined

dlideally the CPI of the pipeline execution is 1 (after fill-up), thus
=>» CPI pipelined = Ideal CPI + Pipeline stall clock per instruction
= 1 + Pipeline stall clock per instruction

CPIunpipelined y Clock cycleunpipelined

Speedup =
P P 1 + Pipelinestall cyclesper instructiom Clockcyclepipelined

 Assuming all pipeline stages are balanced, then

Speedup = — : . — x Pipeline depth
1 + Pipeline stall cycles per instruction

/s

P
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Data Hazard
Time (clock cycles) 5
IF_:ID/RF; \EX: MEM: WB :

add r1,r2,r3 'mIReg

Im _,I:Reg_'_:(> 0m| Reg
sub r4,r1,r3 %—ﬂ

and r6,r1,r7 'm Iﬁeggﬁm_f Reg
Elm :Regg = 1 Dm L: Reg;
R gy '

Elm _ifRegg

NS ~ 0O S ~

or r8,r1,r9

S~ 0 Q=0

|xor r10,r1,r11

Dependencies backwards in time are hazards

* Slide is courtesy of Dave Patterson

24

N\ Mohamed Younis CMCS 611, Advanced Computer Architecture



S~ 0 S ~

s~ 0 Q=0

Time (clock cycles)

Data Hazard Solution

eaNMunns

add r1,r2,r3 'mﬂéfRegé

sub r4,
and ro,

or rs8,

xor r10,r1,r11

IF | IDIRF;

r3 [m ]t
’ :

7

Regg

,r9

Reg

;

Dm

result from one stage to another

* Slide is courtesy of Dave Patterson
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Resolving Data Hazards for Loads

Time (clock cycles)

IF IDIRFE
Iw r1,0(r2) | m f|Rea:
sub r4,r1,r3 Im -f , Reg |
 Dependencies backwards in time are hazards
1 Cannot solve with forwarding
1 Must delay/stall instruction dependent on loads
AN * Slide is courtesy of Dave Patterson
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Control Hazard

L Stall: wait until decision is clear

=>» Its possible to move up decision to 2"d stage by adding hardware to
check registers as being read

Time (clock cycles)

Add Mem_[Reg‘l%/Mem(Reg

S ~ 0 S ~

Mem _.[ Reg

Beq

:[Mem Reg

= 0O o =0

Load  Stall {woi[Res]

Borg

4 Impact: 2 clock cycles per branch instruction = slow

AN * Slide is courtesy of Dave Patterson

P

N\ Mohamed Younis CMCS 611, Advanced Computer Architecture 27



Control Hazard Solution

1 Predict: guess one direction then back up if wrong
=» Predict not taken

,{, Time (clock cycles)

‘? Add Mem _[Reg

o |Beq [t}

g Load gMem _;:Reg >E\ iVIem Reg

O Impact: 1 clock cycles per branch instruction if right, 2 if wrong
(right - 50% of time)
1 More dynamic scheme: history of 1 branch (- 90%)

AN * Slide is courtesy of Dave Patterson
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Control Hazard Solution

1 Redefine branch behavior (takes place after next instruction)

Time (clock cycles)

Add

S ~ 0 3> —~

Beq

Misc

= ® Q=0

Load

Mem

EReg;

i Mem [} Reg

:|Mem

= —
_I:Reg—|_>5/|\nem r Reg

d

§Mem _?_'Reg >\éﬁ éivlem Reg

Mem E_[Reg >}/ Mem E Reg

4 Impact: 0 clock cycles per branch instruction if can find
instruction to put in “slot” (- 50% of time)

/s

* Slide is courtesy of Dave Patterson
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Conclusion
d Summary

=» An overview of Pipelining
* Pipelining concept is natural
« Start handling of next instruction while current one is in progress

=» Pipeline performance
« Performance improvement by increasing instruction throughput
* |deal and upper bound for speedup is number of stages in pipeline

=>» Pipelined hazards
e Structural, data and control hazards
 Hazard resolution techniques

] Next Lecture

=» Data and control Hazards
=>» Pipelined control

Reading assignment includes Appendix A.1 & A.2 in the textbook
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